
1

x86’s instruction sets

2

Instruction Set Classification
 Transfer

 Move
 Arithmetic

 Add / Subtract
 Mul / Div, etc.

 Control
 Jump
 Call / Return, etc.

3

Data transfer : Move
 MOV Dest, Src

 MOV reg, reg reg <- reg
 MOV reg, mem reg <- mem
 MOV mem, reg mem <- reg
 MOV reg, imm reg <- imm
 MOV mem, imm mem <- imm

 There is no move mem<-mem instruction.

4

Move limitation
 Both operand must be in the same size.
 There is no instruction to put immediate value

directly to segment register. Have to use
accumulator (AX) to accomplish this.

 To put immediate value directly to memory,
we have to specify its size. (Byte/Word PTR)

5

Move (MOV) Example
 MOV AX,100h
 MOV BX,AX
 MOV DX,BX

 MOV AX,1234h
 MOV DX,5678h
 MOV AL,DL
 MOV BH,DH

6

MOV Example
 MOV AX,1000h
 MOV [100h],AX
 MOV BX,[100h]

 MOV BYTE PTR [200h],10h
 MOV WORD PTR [300h],10h

 MOV AX,2300h
 MOV DS,AX

7

MOV : 16 / 8 Bit register
 To move value

between registers,
their size must be
the same.

8

MOV : Memory

 Given only offset where to put value, it will be
automatically select DS as the segment register.

9

Byte ordering : Little endian
 Since, x86’s byte

ordering is little
endian.

 Therefore, the LSB
will be placed at
lowest address and
MSB will be placed at
highest address.

10

Displacement
 We can use BX (Base)

register to point a place
of memory.

 Both register direct or
displacement.

 AX = ?

11

What is the result of …
 MOV [100h] , 10h
 Address 100 = 10h
 What about address 101?
 Word or Byte?

 MOV WORD PTR [100h], 10h
 MOV BYTE PTR [100h], 10h

 What about MOV [100h], AX ?

12

Status Register (Flag)

13

Flag
 8086 has 16 bit flag to indicate the status of final

arithmetic result.

14

Zero Flag
 The zero flag will be set (1) whenever the result is

zero.

15

Parity flag
 The parity flag will be set whenever the number of

bit “1” are even.

16

Carry flag
 Carry flag will be set whenever there is a carry or

borrow (only with unsigned operation).

17

Overflow flag
 Overflow flag will be set whenever the result is

overflow (with signed operation).

18

Sign flag
 Sign flag will be set whenever the result is negative

with signed operation.

19

More flag
 Auxiliary flag will be set when the result of BCD

operation need to be adjusted.
 Direction flag is used to specify direction

(increment/decrement index register) in string
operation.

 Trap flag is used to interrupt CPU after each
operation.

 Interrupt flag is used to enable/disable hardware
interrupt.

20

Flag set/reset instructions
 Carry flag STC / CLC

 Direction flag STD / CLD

 Interrupt flag STI / CLI

21

Arithmetic instructions

22

Increment - Decrement
 INC / DEC

 INC register DEC register
 INC memory DEC memory

 EX.
 INC AX
 DEC BL
 How can we increment a byte of memory?

 INC ??? [100]

23

Add
 ADD reg, imm ADC reg, imm
 ADD reg, mem ADC reg, mem
 ADD reg, reg ADC reg, reg
 ADD mem, imm ADC mem, imm
 ADD mem, reg ADC mem, reg

24

EX. ADD
 MOV AL, 10h
 ADD AL, 20h ;AL = 30h
 MOV BX, 200h ;BX = 0200h
 MOV WORD PTR [BX], 10h
 ADD WORD PTR [BX], 70h
 MOV AH, 89h ;AX = 8930h
 ADD AX, 9876h ;AX = 21A6h
 ADC BX, 01h ;BX = 0202h ?

25

Subtract
 SUB reg, imm SBB reg, imm
 SUB reg, mem SBB reg, mem
 SUB reg, reg SBB reg, reg
 SUB mem, imm SBB mem, imm
 SUB mem, reg SBB mem, reg

26

Ex. SUB
 MOV AL, 10h
 ADD AL, 20h ;AL = 30h
 MOV BX, 200h ;BX = 0200h
 MOV WORD PTR [BX], 10h
 SUB WORD PTR [BX], 70h
 MOV AH, 89h ;AX = 8930h
 SBB AX, 0001h ;AX = 892Eh ?
 SBB AX, 0001h ;AX = 892Dh

27

Compare
 CMP reg, imm
 CMP reg, mem
 CMP reg, reg
 CMP mem, reg

 There is no “CMP mem, imm”

28

Ex. CMP
 MOV CX, 10h
 CMP CX, 20h ;Z=0,S=1,C=1,O=0
 MOV BX, 40h
 CMP BX, 40h ;Z=1,S=0,C=0,O=0
 MOV AX, 30h
 CMP AX, 20h ;Z=0,S=0,C=0,O=0

29

Negation
 Compute 2’complement.
 Carry flag always set.

 Usage
 NEG reg
 NEG mem

30

Ex. NEG
 MOV CX, 10h
 NEG CX ; CX = 0FFF0h
 MOV AX,0FFFFH
 NEG AX ; AX = 1
 MOV BX,1H
 NEG BX ; BX = 0FFFFh

31

Multiplication
 IMUL (Integer multiplication) unsigned

multiplication
 MUL (Multiplication) signed multiplication.

 MUL reg IMUL reg
 MUL mem IMUL mem

 Always perform with accumulator.
 Effected flag are only over and carry flag.

32

8 bit multiplication
 AL is multiplicand
 AX keep the result

 MOV AL,10h ; AL = 10h
 MOV CL,13h ; CL = 13h
 IMUL CL ; AX = 0130h

33

16 bit multiplication
 AX is multiplicand
 DX:AX keep the result

 MOV AX,0100h ; AX = 0100h
 MOV BX,1234h ; BX = 1234h
 IMUL BX ; DX = 0012h

; AX = 3400h

34

Division
 IDIV (Integer division) unsigned division.
 DIV (Division) signed division.

 DIV reg IDIV reg
 DIV mem IDIV mem

 Always perform with accumulator.
 Effected flag are only over and carry flag.

35

8 bit division
 AL is dividend
 AL keep the result
 AH keep the remainder

 MOV AX, 0017h
 MOV BX, 0010h
 DIV BL ; AX = 0701

36

16 bit multiplication
 DX:AX dividend.
 AX keep the result, DX keep the remainder.

 MOV AX,4022h ;
 MOV DX,0000h ;
 MOV CX,1000h ;
 DIV CX ;AX = 0004

;DX = 0022

37

Conversion
 Byte to Word : CBW

 Signed convert AL -> AX

 Word to Double word : CWD
 Signed convert AX -> DX:AX

38

Ex. Conversion
 MOV AL,22h
 CBW ; AX=0022h
 MOV AL,F0h
 CBW ; AX=FFF0h
 MOV AX, 3422h
 CWD ; DX=0000h

; AX=3422h

39

40

Example about flag with arithmetic

 เอกสารอา้งองิ
 เอกสารประกอบการสอนวิชา 204221 องค์ประกอบคอมพิวเตอร์และ

ภาษาแอสเซมบลี้ มหาวิทยาลัยเกษตรศาสตร์, 1994

41

Example about flag with arithmetic

NEG -> Carry flag always 1, INC/DEC does not effect any flag

42

Jump and Loops
 Control structures

 Selection
 Repetition / Loop

 Jxx Label

43

44

45

46

If ah=10, if ah>=10

47

Get ‘Q’ and Print ASCII code.

48

Loop
 Base on CX (Counter register) to count the

loop.
 Instructions :

 LOOP ; Dec CX … 0
 LOOPZ ;CX<>0 and Z=1
 LOOPNZ ;CX<>0 and Z=0
 JCXZ ; Jump if CX=0, used with

LOOP to determine the CX before loop.

49

LOOP

50

JCXZ

51

Example finding first character

52

That’s all.

