

Visual C#®

And Databases
A Computer Programming Tutorial

By
Philip Conrod & Lou Tylee

©2017 Kidware Software LLC

PO Box 701
Maple Valley, WA 98038

http://www.computerscienceforkids.com
http://www.kidwaresoftware.com

http://www.computerscienceforkids.com
http://www.kidwaresoftware.com

Copyright © 2017 by Kidware Software LLC. All rights reserved

Kidware Software LLC
PO Box 701
Maple Valley, Washington 98038
1.425.413.1185
www.kidwaresoftware.com
www.computerscienceforkids.com

All Rights Reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Printed in the United States of America

ISBN-13: 978-1-937161-66-8 (Electronic)
ISBN-13: 978-1-937161-74-3 (Printed)

Previous edition published as “Visual C# & Databases - 2012 Professional Edition”

Cover Design by Neil Sauvageau
Illustrations by Kevin Brockschmidt

This copy of “Visual C# and Databases” and the associated software is licensed to a single user.
Copies of the course are not to be distributed or provided to any other user. Multiple copy licenses
are available for educational institutions. Please contact Kidware Software for school site license
information.

This guide was developed for the course, “Visual C# and Databases,” produced by Kidware
Software, Maple Valley, Washington. It is not intended to be a complete reference to the Visual
Basic language. Please consult the Microsoft website for detailed reference information.

This guide refers to several software and hardware products by their trade names. These references
are for informational purposes only and all trademarks are the property of their respective
companies and owners. Microsoft, Visual Studio, Small Basic, Visual Basic, Visual J#, and Visual
C#, IntelliSense, Word, Excel, MSDN, and Windows are all trademark products of the Microsoft
Corporation. Java is a trademark product of the Oracle Corporation.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

This book expresses the author’s views and opinions. The information in this book is distributed on
an "as is" basis, without and expresses, statutory, or implied warranties.

http://www.kidwaresoftware.com
http://www.computerscienceforkids.com

Neither the author(s) nor Kidware Software LLC shall have any liability to any person or entity
with respect to any loss nor damage caused or alleged to be caused directly or indirectly by the
information contained in this book.

About The Authors

Philip Conrod has authored, co-authored and edited numerous computer
programming books for kids, teens and adults. Philip holds a BS in
Computer Information Systems and a Master's certificate in the Essentials
of Business Development from Regis University. He also holds a
Certificate in Programming for Business from Warren-Tech. Philip has
been programming computers since 1977. He has held various Information
Technology leadership roles in companies like Command Plus, BibleBytes
Software, Sundstrand Aerospace, Safeco Insurance Companies,
FamilyLife, Kenworth Truck Company, PACCAR and Darigold. In his
spare time, Philip serves as the President & Publisher of Kidware
Software, LLC. He is the proud father of three “techie” daughters and he
and his beautiful family live in Maple Valley, Washington.

Lou Tylee holds BS and MS degrees in Mechanical Engineering and a
PhD in Electrical Engineering. Lou has been programming computers
since 1969 when he took his first Fortran course in college. He has written
software to control suspensions for high speed ground vehicles, monitor
nuclear power plants, lower noise levels in commercial jetliners, compute
takeoff speeds for jetliners, locate and identify air and ground traffic and to
let kids count bunnies, learn how to spell and do math problems. He has
written several online texts teaching Visual Basic, Visual C# and Java to
thousands of people. He taught a beginning Visual Basic course for over
15 years at a major university. Currently, Lou works as an engineer at a
major Seattle aerospace firm. He is the proud father of five children and
proud husband of his special wife. Lou and his family live in Seattle,
Washington.

Acknowledgements

I want to thank my three wonderful daughters - Stephanie, Jessica and Chloe, who helped with
various aspects of the book publishing process including software testing, book editing, creative
design and many other more tedious tasks like finding errors and typos. I could not have
accomplished this without all your hard work, love and support. I want to also thank my best friend
Jesus, who has always been there by my side giving me wisdom and guidance. Without you, this
book would have never been printed or published.

I also want to thank my multi-talented co-author, Lou Tylee, for doing all the real hard work
necessary to develop, test, debug, and keep current all the ‘beginner-friendly’ applications, games
and base tutorial text found in this book. Lou has tirelessly poured his heart and soul into so many
previous versions of this tutorial and there are so many beginners who have benefited from his work
over the years. Lou is by far one of the best application developers and tutorial writers I have ever
worked with. Thank you Lou for collaborating with me on this book project.

Contents
Course Description
Course Prerequisites
How to take the Course
Software Requirements
Hardware Requirements
Installing and Using the Downloadable Solution Files
Installing Visual C# & Databases
Foreword by David B. Taylor, Former College Professor & Dept
Chair

1. Introducing Visual C# and Databases
Preview
Course Objectives
Course Requirements
What is a Database?
Where Does Visual C# Fit In?
Building a Visual C# Application

Structure of a Visual C# Application
Steps in Developing Application
Drawing the User Interface and Setting Properties
Setting Properties of Controls at Design Time
Setting Properties at Run-Time
How Names are Used in Control Events

Writing Code
Review of Variables
Visual C# Data Types
Variable Declaration

Example 1-1. Mailing List Application
Summary

2. Introduction to Databases
Review and Preview
Database Structure and Terminology
Relational Databases
Using SQL Server Databases

Sample Relational Database
Sample Database Structure
Virtual Database Tables
Creating a Database
Summary

3. Database Connection
Review and Preview
Data Object Preview
Connection Object
Connection Object – Access Database
Access Databases and 64 Bit Operating Systems
Connection Object – SQL Server Database
Example 3-1. Accessing the Books Database
Command Object
Command Object – Access Database
Command Object – SQL Server Database
Example 3-1 (Command Object). Accessing the Books Database
DataAdapter Object
DataAdapter Object – Access Database
DataAdapter Object – SQL Server Database
DataSet Object
DataTable Object
DataRow Object
Example 3-1 (Data Table). Accessing the Books Database
Data Bound Controls
Example 3-1 (Data Binding). Accessing the Books Database
CurrencyManager Object
Example 3-1 (Final Version). Accessing the Books Database
Data Wizards
Example 3-2 (Access Database). Books Database with Wizards
Example 3-2 (SQL Server Database). Books Database with
Wizards
Using SQL Server Databases in Examples
Summary
Example 3-3. Northwinds Trader Database
Example 3-3. Using SQL Server Databases

4. Database Queries with SQL

Review and Preview
SQL Background
Basics of SQL
Where Does SQL Fit In Visual C#?
Example 4-1. SQL Tester
Example 4-1. Using SQL Server Databases
SELECT/FROM SQL Statement
ORDER BY Clause
WHERE Clause
Single Table WHERE Clause
Multiple Table WHERE Clause
INNER JOIN Clause
OUTER JOIN Clause
Functions with SQL (Access Databases)
Functions with SQL (SQL Server Databases)
SQL Aggregate Functions
SQL Construction Tools
SQL Statements with Access
SQL Statements with the Data Wizard
Building SQL Commands in Code
Example 4-2. Searching the Books Database
Example 4-2. Using SQL Server Databases
Summary
Example 4-3. Northwind Traders Database
Example 4-3. Using SQL Server Databases

5. Visual C# Interface Design
Review and Preview
Interface Design Philosophy
Example 5-1. Mailing List Revisited
Visual C# Standard Controls

Form Control
Button Control
Label Control
TextBox Control
CheckBox Control
RadioButton Control
GroupBox Control

Panel Control
PictureBox Control

Example 5-2. Authors Table Input Form
Example 5-2. Using SQL Server Databases
MessageBox Object
Example 5-3. Authors Table Input Form (Message Box)
Example 5-3. Using SQL Server Databases
Application State
Example 5-4. Authors Table Input Form (Application State)
Example 5-4. Using SQL Server Databases
Entry Validation
Key Trapping
Example 5-5. Authors Table Input Form (Entry Validation)
Example 5-5. Using SQL Server Databases
Input Validation
Example 5-6. Authors Table Input Form (Input Validation)
Example 5-6. Using SQL Server Databases
Error Trapping and Handling
Example 5-7. Authors Table Input Form (Error Trapping)
Example 5-7. Using SQL Server Databases
On-Line Help Systems

Creating a Help File
Starting the HTML Help Workshop
Creating Topic Files
Creating Table of Contents File
Compiling the Help File

HelpProvider Control
Example 5-8. Authors Table Input Form (On-Line Help)
Example 5-8. Using SQL Server Databases
Application Testing
Other Controls

MaskedTextBox Control
NumericUpDown Control
TabControl Control
Toolstrip (Toolbar) Control
ListBox Control
ComboBox Control
DataGridVIew Control
MonthCalendar Control
DateTimePicker Control

OpenFileDialog Control
SaveFileDialog Control

Summary
Example 5-9. Publisher Table Input Form

Build Interface
Add Message Box(es)
Code Application State
Perform Entry Validation
Perform Input Validation
Add Error Trapping and Handling
Add On-Line Help System
Application Testing

Example 5-9. Using SQL Server Databases

6. Database Management
Review and Preview
Database Management Tasks
Editing Database Records
Phone Contact Database
Example 6-1. Editing Database Records
Example 6-1. Using SQL Server Databases
Adding Database Records
Example 6-2. Adding Database Records
Example 6-2. Using SQL Server Databases
Deleting Database Records
Example 6-3. Deleting Database Records
Example 6-3. Using SQL Server Databases
Finding Records in a Database
Example 6-4. Finding Database Records
Example 6-4. Using SQL Server Databases
Modifying Records in Code
Example 6-5. Modifying Records in Code
Example 6-5. Using SQL Server Databases
Stopping a Database Application
Example 6-6. Stopping a Database Application
Example 6-6. Using SQL Server Databases
Example 6-7. Authors Table Input Form

Additional Navigation Capabilities
Editing Records

Adding Records
Deleting Records
Stopping the Application

Example 6-7. Using SQL Server Databases
Example 6-8. Publishers Table Input Form

Additional Navigation Capabilities
Editing Records
Adding Records
Deleting Records
Stopping the Application

Example 6-8. Using SQL Server Databases
Multiple Table Database Management
Database Keys
Database Modifications
Final Application
Example 6-9. Books Database Management System

Basic Book Titles Input Form
Finding Records
Navigation Information
Adding Publisher Name
Adding Publisher Editing
Modify Publishers Input Form
Modify Authors Input Form
Adding Author Names
Example 6-10. Database Detective – Author Search
Example 6-10. Using SQL Server Databases
Viewing Author Selections
Viewing Author Names
Saving Author Names
Adding Author Editing
Input Control Navigation
Entry and Input Validation
Titles Form On-Line Help

Example 6-9. Using SQL Server Databases
Summary

7. Database Reports
Review and Preview
PrintDocument Object

Printing Document Pages
Pen Object
Brush Object
Graphics Methods
PageSetupDialog Control
PrintDialog Control
PrintPreviewDialog Control
PrintDocument Object with Databases
Example 7-1. Database Report
Example 7-1. Using SQL Server Databases
Example 7-2. Titles Listing
Example 7-2. Using SQL Server Databases
Example 7-3. Book Publishers Listing

User Interface
Database Connection and Printing

Example 7-3. Using SQL Server Databases
Other Approaches to Database Reports
Summary

8. Distributing a Database Application
Review and Preview
Accessing Database Files in Code
Database File in Application Path
Example 8-1. Opening Database Files in Application Directory
Example 8-1. Using SQL Server Databases
Database File Location with OpenFile Dialog Control
Example 8-2. Opening Database Files with OpenFile Dialog
Control
Example 8-2. Using SQL Server Databases
Distribution of a Visual C# Database Application
Application Icons
Custom Icons
Example 8-3. Visual C# Setup Wizard

Step 1. Welcome to the Setup Project Wizard
Step 2. Choose a project type
Step 3. Choose project outputs to include
Step 4. Choose files to include
Step 5. Create project

Building the Setup Program

Installing a Visual C# Application
Summary

9. Database Design Considerations
Review and Preview
Database Design
Database Modeling
Information Requirements
Table Requirements
Field Requirements
Field Types
Null Values
Database Design Implementation
Building Databases with the Microsoft Access
Example 9-1. KWSALES Database with Microsoft Access

Getting Started
Customers Table
Orders Table
Purchases Table
Products Table
Define Relationships

Building SQL Server Databases with Server Explorer
Example 9-2. KWSALES Database with Server Explorer

Getting Started
Customers Table
Orders Table
Purchases Table
Products Table
Define Relationships

Building Access Databases with Visual C#
Example 9-3. KWSALES Database with Visual C#

Adding Reference to ADOX Library
Create a Database
Create a Table
Add Fields to Table
Define Table Primary Key
Define Table Indexes
Define Table Relationships

Example 9-4. SQL Server Databases with Visual C#

Database Testing and Design Refinement
Summary

10. Sample Database Projects
Review and Preview
Overview of Database Projects
Example 10-1. Sales Order Form Project

Preliminaries
Order Information
Existing Customer Information
Adding a New Customer
Product Selection
Submitting an Order
Printing an Invoice
Suggested Improvements

Example 10-1. Using SQL Server Databases
Example 10-2. Home Inventory Project

Home Inventory Database
Preliminaries
Home Inventory Interface
Database Connection
Display Photo
Database Navigation
Editing Records
Load Photo
Adding Records
Deleting Records
Entry Validation
Input Validation
Inventory Report
Stopping the Application
Suggested Improvements

Example 10-2. Using SQL Server Databases
Example 10-3. Weather Monitor Project

Weather Monitor Interface
Record Weather Data Tab
Weather Monitor Database
Database Fields
Adding Date Values and Editing Features

Opening Database Files
Date Display Coordination
View Temperature Data Tab
Temperature Summary Statistics
Temperature Plot
View Precipitation Data Tab
Precipitation Summary Statistics
Precipitation Plot
Weather Monitor Printed Reports
Weather Data Report
Temperature Data Report
Precipitation Data Report
Weather Monitor Help System
Weather Monitor Icon
Weather Monitor Distribution Package
Suggested Improvements

Example 10-3. Using SQL Server Databases
Summary

11. Other Database Topics
Review and Preview
Exporting Database Data

Opening a Sequential File for Output
Writing Data to a Sequential File
Saving a Sequential File
Example 11-1. Exporting Database Data

Importing Database Data
Opening a Sequential File for Input
Reading Data from a Sequential File
Closing a Sequential File
Example 11-2. Importing Database Data

Other Database Types
ODBC Data Objects
Oracle Data Objects

Multi-User Considerations
Database Web Applications
Starting a New Web Applications
Web Form Controls
Building a Web Application

Example 11-3. Viewing Weather Data
Summary
Example 11-4. The Last Database Project

More Self-Study or Instructor-Led Computer
Programming Tutorials by Kidware Software

Course Description:

Visual C# and Databases is a tutorial that provides a detailed introduction
to using Visual C# for accessing and maintaining databases. Topics
covered include: database structure, database design, Visual C# project
building, ADO .NET data objects, data bound controls, proper interface
design, structured query language (SQL), and database reports.

Visual C# and Databases is presented using a combination of over 850
pages of course notes and actual Visual C# examples. No previous
experience working with databases is presumed. It is assumed, however,
that users of the course are familiar with the Visual C# environment and
the steps involved in building a Visual C# application.

Course Prerequisites:

To grasp the concepts presented in Visual C# and Databases, you should
possess a working knowledge of Microsoft Windows. No previous
experience working with databases is presumed. It is assumed, however,
that users of the course are familiar with the Visual C# environment and
the steps involved in building a Visual C# application (such background
can be gained from our Learn Visual C# course). You will also need the
ability to view and print documents saved in Microsoft Word. Finally, and
most obvious, you need to have Microsoft Visual Studio Community
Edition. This is a separate product that can be downloaded for free from
Micrososoft’s website:

https://www.visualstudio.com/free-developer-offers/

http://www.visualstudio.com/free-developer-offers

How To Take the Course:

Visual C# and Databases is a self-paced course. Each chapter will require
a different amount of time. The suggested approach is to decide how much
time you can spend each week working through the notes. Print out the
notes one chapter at a time. Then, work through the notes at your own
pace. Try to do each example as it is encountered in the notes. Work
through the projects. If you need any help, all completed projects are
included in the Code folder.

Software Requirements

Visual Studio 2017 will install and run on the following operating systems:

• Windows 10 version 1507 or higher: Home, Professional, Education, and
Enterprise (LTSB is not supported)
• Windows Server 2016: Standard and Datacenter
• Windows 8.1 (with Update 2919355): Basic, Professional, and Enterprise
• Windows Server 2012 R2 (with Update 2919355): Essentials, Standard,
Datacenter
• Windows 7 SP1 (with latest Windows Updates): Home Premium,
Professional, Enterprise, Ultimate

Hardware Requirments

• 1.8 GHz or faster processor. Dual-core or better recommended
• 2 GB of RAM; 4 GB of RAM recommended (2.5 GB minimum if
running on a virtual machine)
• Hard disk space: 1GB to 40GB, depending on features installed
• Video card that supports a minimum display resolution of 720p (1280 by
720); Visual Studio will work best at a resolution of WXGA (1366 by 768)
or higher

Installing and Using the Downloadable Solution
Files:

If you purchased this directly from our website you received an email with
a special and individualized internet download link where you could
download the compressed Program Solution Files. If you purchased this
book through a 3rd Party Book Store like Amazon.com, the solutions files
for this tutorial are included in a compressed ZIP file that is available for
download directly from our website (after registration) at:

http://www.kidwaresoftware.com/vcsdb2015-registration.html

Complete the online web form at the webpage above with your name,
shipping address, email address, the exact title of this book, date of
purchase, online or physical store name, and your order confirmation
number from that store. We also ask you to include the last 4 digits of your
credit card so we can match it to the credit card that was used to purchase
this tutorial. After we receive all this information we will email you a
download link for the Source Code Solution Files associated with this
book.

Warning: If you purchased this book “used” or “second hand” you are not
licensed or entitled to download the Program Solution Files. However, you
can purchase the Digital Download Version of this book at a
highlydiscounted price which allows you access to the digital source code
solutions files required for completing this tutorial.

http://www.kidwaresoftware.com/vcsdb2015-registration.html

Installing Visual C# and Databases:

The course notes and code for Visual C# and Databases are included in
one single ZIP file. Use your favorite ‘unzipping’ application to write all
files to your computer. The course is included in the folder entitled
VCSDB. This folder contains three other folders: Databases, Notes and
Code.

The Databases folder holds the sample databases used in the course. The
Code folder includes all the Visual C# projects developed during the
course. The applications are further divided into Class folders. Each class
folder contains the Visual C# and Databases project folders. As an
example, to open the project named Example 1-1 discussed in Class 1, you
would go to this directory:

C:\VCSDB\Code\Class 1\Example 1-1\

Foreword By David B. Taylor, Former College
Professor & Department Chair

Most computer programs in use today require some interaction with
information stored in a database so learning to program with databases
increases the marketability of a developer exponentially.

This book is structured as a self-study guide but it is easily adapted to
classroom lectures and discussion. The content of the book is excellent. It
starts with the basics and graduates in small and clear but functional
increments. It makes database programming much easier to teach and
learn.

“Visual C# and Databases” provides a complete, thorough, and easy to
understand explanation of database program development from two people
who came up through the ranks as software developers. Their examples
reflect real-world applications that will help new developers quickly
master database software development. Students can easily convert and
expand the examples for their own applications. For example, the Books
Database in Chapter 4 could easily be modified to search a similar
database of cars, bikes, or passwords, etc. Examples are created using
Microsoft’s Access database management system (DBMS) and SQL
Server. This makes it easy for the student to compare their capabilities and
syntax.

I have sincerely enjoyed reading and working through the examples in,
“Visual C# and Databases”. The examples are clear and easy to follow. If I
had any questions or if my code did not work I could simply peek at the
author’s completed code examples to get back on track.

Throughout the book the authors bring attention to the importance of user
interface (UI) design. This is more important than may be obvious at first
but developers tend to focus on the code and forget about the UI but
eventually someone needs to use this program so a functional and
attractive presentation of the program can be the difference between
success and failure of the end product.

A major plus for this text is how the authors include additional and very
useful parallel topics such as the On-Line Help system created in HTML in
Chapter 5 and the Graphics Methods in Chapter 7. The book is not about
HTML or graphics but the coincidental inclusion give the student a
valuable glimpse at other topics of importance. These are just two
examples that didn’t have to be included but they are added as part of other
chapters and will ultimately benefit the student. This took a lot of
forethought by the authors and demonstrates the real value of the book.

As a programmer, a long-time college professor, and as the former head of
the Computer, Engineering, and Business Department, I have reviewed
countless programming books for most of the popular programming
languages. “Visual C# and Databases” by Conrod and Tylee is my favorite
text for helping developers make the leap into the rewarding field of
database development. I highly recommend this book for anyone who is
serious about becoming a professional software developer/engineer.

David B. Taylor, B.S.E.T., M.A.Ed., Ed.S.
Former Professor and Department Chair
Computer, Engineering, and Business
Seminole State College
Sanford, Florida

1
Introducing Visual C# and Databases

Preview
In this first chapter, we will do a quick overview of what the course
entails. We will discuss what you need to complete the course.

We’ll take a brief look at what databases are, where they are used, and
how Visual C# is used with databases. And, we’ll review the Visual C#
development environment and the steps followed to build an application in
Visual C#.

Course Objectives
⇒ Understand the benefits of using Microsoft Visual C# to build a ‘front-

end’ interface as a database programming tool
⇒ Learn database structure, terminology, and proper database design
⇒ Learn how to connect to a database using Visual C# data objects
⇒ Learn the use of Visual C# data bound controls
⇒ Learn to make database queries using SQL (structured query language)
⇒ Understand proper database search techniques
⇒ Learn how to ADOX (Active Data Object Extended) technology to

create a database
⇒ Learn database management techniques
⇒ Learn to create and produce database reports
⇒ Learn how to distribute a Visual C# database application
⇒ Understand connection to different types of databases and remote

databases
⇒ Introduce other database concepts

Course Requirements
An obvious requirement is a Windows-based computer with Microsoft
Windows as well as Visual Studio 2015 Community Edition. The student
should be familiar with the basics of using the Windows operating system.

No knowledge of databases or how to work with databases is presumed.
Adequate introductory material is presented. Even if you’ve worked with
databases before, it is suggested you read through this introductory
information to become acquainted with the nomenclature used by the
author for databases and their component parts.

This course does not teach you how to build a Visual C# application. It is
assumed that the reader has a basic understanding of the Visual C#
development environment and knows the steps involved in building a
Visual C# application. You should feel quite comfortable with building the
example application at the end of this first chapter. If not, our company,
Kidware Software, offers several tutorials that teach this information.
Please visit our web site at:

http//www.kidwaresoftware.com

http://www.kidwaresoftware.com

What is a Database?
A database is a collection of information. This information is stored in a
very structured manner. By exploiting this known structure, we can access
and modify the information quickly and correctly.

In this information age, databases are everywhere:

⇒ When you go to the library and look up a book on their computer,
you are accessing the library’s book database.

⇒ When you go on-line and purchase some product, you are accessing
the web merchant’s product database.

⇒ Your friendly bank keeps all your financial records on their
database. When you receive your monthly statement, the bank
generates a database report.

⇒ When you call to make a doctor appointment, the receptionist looks
into their database for available times.

⇒ When you go to your car dealer for repairs, the technician calls up
your past work record on the garage database.

⇒ At the grocery store, when the checker scans each product, the price
is found in the store’s database, where inventory control is also
performed.

⇒ When you are watching a baseball game on television and the
announcer tells you that “the batter is hitting .328 against left-
handed pitchers whose mother was born in Kentucky on a Tuesday
morning,” that useless information is pulled from the team’s
database (apologies to our foreign readers who don’t understand the
American game of baseball!).

You can surely think of many more places that databases enter your life.
The idea is that they are everywhere. And, each database requires some
way for a user to interact with the information within. Such interaction is
performed by a database management system (DBMS).

The tasks of a DBMS are really quite simple. In concept, there are only a
few things you can do with a database:

1. View the data
2. Find some data of interest
3. Modify the data
4. Add some data
5. Delete some data

There are many commercial database management systems that perform
these tasks. Programs like Access (a Microsoft product) and Oracle are
used worldwide. In this course, we look at using Visual C# as a DBMS.

Examples where you might use Visual C# as a DBMS:

⇒ Implementing a new application that requires management of a
database

⇒ Connecting to an existing database
⇒ Interacting with a database via a server or the internet

In a DBMS, the database may be available locally on your (or the user’s)
computer, available on a LAN (local area network) shared by multiple
users, or only available on a web server via the Internet. In this course, we
spend most of our time looking at local databases, but access with remote
databases is addressed.

We will look at databases in more depth in the next chapter. You will see
that databases have their own vocabulary. Now, let’s take a look at how
Visual C# fits into the database management system.

Where Does Visual C# Fit In?
For database management, we say our Visual C# application acts as a
front-end to the database. This means the Visual C# application provides
the interface between the user and the database. This interface allows the
user to tell the database what he or she needs and allows the database to
respond to the request displaying the requested information in some
manner.

A Visual C# application cannot directly interact with a database. There is a
set of intermediate components between the application and the database
known as ADO (ActiveX Data Object) .NET data objects:

The data objects are Visual C# components that allow connection to the
database, creation of data sets from the database and management of the
database contents. These objects are the conduit between the application
and the database, passing information back and forth between the two.

As mentioned earlier, there are many commercial products (Access, SQL
Server, Oracle) that do database management tasks. You may be asking

why use Visual C# as a database management system (DBMS) when these
commercial products are available? There are two primary advantages to
using Visual C# as a DBMS instead of Access:

1. Your users don’t need to have any commercial product installed on
their computers or know how to use such products. This saves the
users money.

2. By building a custom front-end, you limit what your user can do
with the information within the database. Under normal operation,
commercial DBMS provide no such limits.

So, in this course, we will look at how to build Visual C# applications that
operate as front-ends to databases. Research has shown that over half of all
Visual C# applications involve working with databases. We will look at
how to make our applications into complete database management
systems, being able to view, search, modify, add, and/or delete database
information.

Before going any further, let’s review the steps in building a Visual C#
application and then build a simple application for practice.

Building a Visual C# Application
In the remainder of this chapter, we will provide an overview of a Visual
C# application and how the Visual C# development environment is used to
develop an application. This should provide you with some idea of what
knowledge you need to possess to proceed in this course and introduce the
terminology used by the author to describe a Visual C# application.

Structure of a Visual C# Windows
Application
Project

Application (Project) is made up of:

➢ Forms - Windows that you create for user interface
➢ Controls - Graphical features drawn on forms to allow user

interaction (text boxes, labels, scroll bars, buttons, etc.) (Forms and
Controls are objects.)

➢ Properties - Every characteristic of a form or control is specified
by a property. Example properties include names, captions, size,
color, position, and contents. Visual C# applies default properties.
You can change properties when designing the application or even
when an application is executing.

➢ Methods - Built-in methods that can be invoked to impart some
action to a particular control or object.

➢ Event Methods - Code related to some object or control. This is
the code that is executed when a certain event occurs. In our
applications, this code will be written in the C# language (covered in
detail in Chapter 2 of these notes).

➢ General Methods - Code not related to objects. This code must be

invoked or called in the application.

Steps in Developing Application
There are three primary steps involved in building a Visual C# application:

1. Draw the user interface
2. Assign properties to controls
3. Write code for event methods. Develop any needed general

methods.

We’ll look at each step.

Drawing the User Interface and
Setting Properties
Visual C# operates in three modes.

⇒ Design mode - used to build application
⇒ Running mode - used to run the application
⇒ Debugging mode - application halted and debugger is available

We focus here on the design mode.

Several windows should appear when you start Visual C#. If any of these
windows do not appear, they may be accessed using the main window
menu View item.

⇒ The Main Window consists of the title bar, menu bar, and toolbar.
The title bar indicates the project name. The menu bar has drop-
down menus from which you control the operation of the Visual C#
environment. The toolbar has buttons that provide shortcuts to some
of the menu options (ToolTips indicate their function).

⇒ The Form Window is central to developing Visual C# applications.
It is where you draw your application.

⇒ The Toolbox is the selection menu for controls (objects) used in
your application.

The Properties Window serves two purposes. Its primary purpose is to
establish design mode (initial) property values for objects (controls). It can

also be used to establish event methods for controls. Here, we just look at
how to work with properties. To do this, click the Properties button in the
task bar:

The drop-down box at the top of the window lists all objects in the current
form. Under this box are the available properties for the active (currently
selected) object. Two property views are available: Alphabetic and
Categorized (selection is made using menu bar under drop-down box).
Help with any property can be obtained by highlighting the property of
interest and pressing <F1>.

⇒ The Solution Explorer Window displays a list of all forms and
other files making up your application

As mentioned, the user interface is ‘drawn’ in the form window. There are
four ways to place controls on a form:

1. Click the tool in the toolbox and hold the mouse button down. Drag
the selected tool over the form. When the cursor pointer is at the
desired upper left corner, release the mouse button and the default
size control will appear. This is the classic “drag and drop”
operation.

2. Double-click the tool in the toolbox and it is created with a default
size on the form. You can then move it or resize it.

3. Click the tool in the toolbox, then move the mouse pointer to the
form window. The cursor changes to a crosshair. Place the crosshair
at the upper left corner of where you want the control to be and click
the left mouse button. The control will appear at the clicked point.

4. Click the tool in the toolbox, then move the mouse pointer to the
form window. The cursor changes to a crosshair. Place the crosshair
at the upper left corner of where you want the control to be, press
the left mouse button and hold it down while dragging the cursor
toward the lower right corner. A rectangle will be drawn. When you
release the mouse button, the control is drawn in the rectangle.

To move a control you have drawn, click the object in the form (a cross
with arrows will appear). Now, drag the control to the new location.
Release the mouse button.

To resize a control, click the control so that it is selected (active) and
sizing handles appear. Use these handles to resize the object.

To delete a control, select that control so it is active (sizing handles will
appear). Then, press <Delete> on the keyboard. Or, right-click the control.

A menu will appear. Choose the Delete option. You can change your mind
immediately after deleting a control by choosing the Undo option under
the Edit menu.

Setting Properties of Controls at
Design Time
Each form and control has properties assigned to it by default when you
start up a new project. There are two ways to display the properties of an
object. The first way is to click on the object (form or control) in the form
window. Sizing handles will appear on that control. When a control has
sizing handles, we say it is the active control. Now, click on the Properties
window or the Properties window button in the tool bar. The second way is
to first click on the Properties window. Then, select the object from the
drop-down box at the top of the Properties window. When you do this, the
selected object (control) will now be active (have sizing handles). Shown
is the Properties window (make sure the Properties button, not the Events
button is selected in the toolbar) for the Form object:

The drop-down box at the top of the Properties Window is the Object box.
It displays the name of each object in the application as well as its type.
This display shows the Form object. The Properties list is directly below
this box. In this list, you can scroll through the list of properties for the

selected object. You select a property by clicking on it. Properties can be
changed by typing a new value or choosing from a list of predefined
settings (available as a drop down list). Properties can be viewed in two
ways: Alphabetic and Categorized (selected using the menu bar under the
Object box). At the bottom of the Properties window is a short description
of the selected property (a kind of dynamic help system).

A very important property for each control is its Name. The name is used
by Visual C# to refer to a particular object or control in code. A
convention has been established for naming Visual C# controls. This
convention is to use a three letter (lower case) prefix (identifying the type
of control) followed by a name you assign. A few of the prefixes are (we’ll
see more as we progress in the notes):

Control Prefix Example
Form frm frmWatch
Button btn btnExit, btnStart
Label lbl lblStart, lblEnd
Text Box txt txtTime, txtName
Menu mnu mnuExit, mnuSave
Check box chk chkChoice

It is suggested to use a mixture of upper and lower case letters for better
readability. But, be aware that Visual C# is a case-sensitive language,
meaning the names frmWatch and FRMWATCH would not be the same
name.

Control (object) names can be up to 40 characters long, must start with a
letter, must contain only letters, numbers, and the underscore (_) character.
Names are used in setting properties at run-time and also in establishing
method names for control events. Use meaningful names that help you (or
another programmer) understand the type and purpose of the respective
controls.

Setting Properties at Run Time
In addition to setting properties at design time, you can set or modify
properties while your application is running. To do this, you must write
some code. The code format is:

objectName.PropertyName = NewValue;

Such a format is referred to as dot notation. For example, to change the
BackColor property of a button named btnStart, we'd type:

btnStart.BackColor = Color.Blue;

Good naming conventions make it easy to understand what’s going on
here. The button named btnStart will now have a blue background.

How Names are Used in Control
Events
The names you assign to controls are also used by Visual C# to set up a
framework of event-driven methods for you to add code to. Hence, proper
naming makes these methods easier to understand.

The format for each of these methods is:

private void ControlName_Event(Arguments)
{

}

where Arguments provides information needed by the method to do its
work.

Visual C# provides the header line with its information and arguments and
left and right curly braces (all code goes between these two braces)
delineating the start and end of the method. Notice that with proper
naming convention, it is easy to identify what tasks are associated with a
particular event of a particular control.

Writing Code
The last step in building a Visual C# application is to write code using the
C# language. This is the most time consuming task in any Visual C#
application. It is also the most fun and most rewarding task. As controls
are added to a form, Visual C# automatically builds a framework of all
event methods. We simply add code to the event methods we want our
application to respond to. And, if needed, we write general methods.

Code is placed in the Code Window. There are two ways to establish
event methods for controls – one directly from the form and one using the
properties window. Let’s look at both. Every control has a default event
method. This is the method most often used by the control. For example, a
button control’s default event method is the Click event, since this is most
often what we do to a button. To access a control’s default event method,
you simply double-click the control on the form.

Though simple and quick, double-clicking a control to establish a control
event method will not work if you are not interested in the default event. In
that case, you need to use the properties window. Recall we mentioned that
the properties window is not only used to establish properties, but also
event methods. To establish an event method using the properties window,
click on the Events button (appears as a lightning bolt) in the properties
window toolbar:

The active control’s events will be listed (the default event will be
highlighted):

To establish an event method, scroll down the listed events and double-
click the one of interest. The selected event method will appear in the code
window.

There are a few rules to pay attention to as you type Visual C# code:

➢ Visual C# is case-sensitive, meaning upper and lower case letters
are considered to be different characters. When typing code, make
sure you use upper and lower case letters properly

➢ Visual C# ignores any “white space” such as blanks. We will often
use white space to make our code more readable.

➢ Curly braces are used for grouping. They mark the beginning and
end of programming sections. Make sure your Visual C# programs
have an equal number of left and right braces. We call the section of
code between matching braces a block.

➢ It is good coding practice to indent code within a block. This makes
code easier to follow. The Visual C# environment automatically
indents code in blocks for you.

➢ Every Visual C# statement will end with a semicolon. A statement
is a program expression that generates some result. Note that not all
Visual C# expressions are statements (for example, the line defining
the form constructor has no semicolon).

Review of Variables
Variables are used by Visual C# to hold information needed by your
application. Rules used in naming variables:

⇒ No more than 40 characters
⇒ They may include letters, numbers, and underscore (_)
⇒ The first character must be a letter which, by convention, is usually

lower case
⇒ You cannot use a reserved word (word needed by Visual C#)

Visual C# Data Types
⇒ bool (true or false)
⇒ int, long (Whole numbers)
⇒ short, float, double (Floating point numbers)
⇒ DateTime
⇒ string (Used for many control properties)
⇒ char (single character string variables)
⇒ Object (yes, objects can be variables!)

Variable Declaration
Once we have decided on a variable name and the type of variable, we
must tell our Visual C# application what that name and type are. We say,
we must explicitly declare the variable.

There are many advantages to explicitly typing variables. Primarily, we
insure all computations are properly done, mistyped variable names are
easily spotted, and Visual C# will take care of insuring consistency in
variable names. Because of these advantages, and because it is good
programming practice, we will always explicitly type variables.

To explicitly type a variable, you must first determine its scope. Scope
identifies how widely disseminated we want the variable value to be. We
will use three levels of scope:

➢ Block level
➢ Method level
➢ Form level

Block level variables are only usable within a single block of code (will be
discussed in more detail in Class 2).

The value of method level variables are only available within a method.
Such variables are declared within a method, using the variable type as a
declarer:

int myInt;
double myDouble;
string myString, yourString;

These declarations are usually placed after the opening left curly brace of a
method.

Form level variables retain their value and are available to all methods

within that form. Form level variables are declared in the code window
right after the Form constructor generated automatically by Visual C#,
outside of any other method:

Form level variables are declared just like method level variables:

int myInt;
DateTime myDate;

Example 1-1

Mailing List Application
In this example, we will build a Visual C# application that could function
as a database interface. The application allows the entry of information
(names and addresses) to build a mailing list. An added feature is a timer
that keeps track of the time spent entering addresses. After each entry,
rather than write the information to a database (as we would normally do),
the input information is simply displayed in a Visual C# message box. We
present this example to illustrate the steps in building an application. If
you feel comfortable building this application and understanding the
corresponding code, you probably possess the Visual C# skills needed to
proceed with this course.

1. Start a new project. Place two group boxes on the form (one for entry of
address information and one for the timing function). In the first group
box, place five labels, five text boxes, and two buttons. In the second
group box, place a text box and three buttons. Add a timer control.
Resize and position controls so your form resembles this:

2. Set properties for the form and controls (these are just suggestions –
make any changes you might like):

Form1:
Name frmMailingList
FormBorderStyle Fixed Single
Text Mailing List Application

groupBox1:
Name grpMail
Text Address Information
Enabled False

label1:
Text Name

label2:
Text Address

label3:
Text City

label4:
Text State

label5:
Text Zip

textBox1:
Name txtName
TabIndex 0

textBox2:
Name txtAddress
TabIndex 1

textBox3:
Name txtCity
TabIndex 2

textBox4:
Name txtState
TabIndex 3

textBox5:
Name txtZip
TabIndex 4

button1:
Name btnAccept
Text &Accept
TabIndex 5

button2:
Name btnClear
Text &Clear

groupBox2:
Name grpTime
Text Elapsed Time

textBox6:
Name txtElapsedTime
Font Bold, Size 14
TabStop False
Text 00:00:00
TextAlign Center

button3:
Name btnStart
Text &Start

button4:
Name btnPause
Text &Pause
Enabled False

button5:
Name btnExit
Text E&xit

timer1:
Name timSeconds
Enabled False
Interval 1000

When done, the form should appear something like this:

3. Form level variable declarations:

DateTime lastNow;
TimeSpan elapsedTime;

4. Put this code in the btnStart_Click event method:

private void btnStart_Click(object sender, EventArgs e)
{

// Start button clicked
// Disable start and exit buttons
// Enabled pause button

btnStart.Enabled = false;
btnExit.Enabled = false;
btnPause.Enabled = true;
// Establish start time and start timer control
lastNow = DateTime.Now;
timSeconds.Enabled = true;
// Enable mailing list frame
grpMail.Enabled = true;
txtName.Focus();

}

5. Put this code in the btnPause_Click event method:

private void btnPause_Click(object sender, EventArgs e)
{

// Pause button clicked
// Disable pause button
// Enabled start and exit buttons
btnPause.Enabled = false;
btnStart.Enabled = true;
btnExit.Enabled = true;
// Stop timer
timSeconds.Enabled = false;
// Disable editing frame
grpMail.Enabled = false;

}

6. Put this code in the btnExit_Click event method:

private void btnExit_Click(object sender, EventArgs e)
{

this.Close();
}

7. Put this code in the timSeconds_Timer event method:

private void timSeconds_Tick(object sender, EventArgs e)
{

// Compute elapsed time and display
elapsedTime += DateTime.Now - lastNow;
txtElapsedTime.Text = Convert.ToString(new

TimeSpan(elapsedTime.Hours, elapsedTime.Minutes,
elapsedTime.Seconds));

lastNow = DateTime.Now;
}

Note a couple of lines in the code above are so long that the word
processor wraps them around at the margin. Type each as one long line,
not two separate lines. Be aware this happens quite often in these notes
when actual code is being presented.

8. Put this code in the txtInput_KeyPress event method (handles the
KeyPress event for all input text boxes):

private void txtInput_KeyPress(object sender,
KeyPressEventArgs e)
{

String boxName = ((TextBox) sender).Name;
// Check for return key
if ((int) e.KeyChar == 13)
{

switch (boxName)
{

case "txtName":
txtAddress.Focus();
break;

case "txtAddress":
txtCity.Focus();
break;

case "txtCity":
txtState.Focus();

break;
case "txtState":

txtZip.Focus();
break;

case "txtZip":
btnAccept.Focus();
break;

}
}
// In zip text box, make sure only numbers or backspace pressed
if (boxName.Equals("txtZip"))
{

if ((e.KeyChar >= '0' && e.KeyChar <= '9') || (int)
e.KeyChar == 8)
{

e.Handled = false;
}
else
{

e.Handled = true;
}

}
}

9. Put this code in the btnAccept_Click event method:

private void btnAccept_Click(object sender, EventArgs e)
{

string s;
// Accept button clicked - form label and output in message box
// Make sure each text box has entry
if (txtName.Text.Equals("") || txtAddress.Text.Equals("") ||
txtCity.Text.Equals("") || txtState.Text.Equals("") ||
txtZip.Text.Equals(""))

{
MessageBox.Show("Each box must have an entry!",
"Error", MessageBoxButtons.OK,
MessageBoxIcon.Information);
txtName.Focus();
return;

}
s = txtName.Text + "\r\n" + txtAddress.Text + "\r\n";
s += txtCity.Text + ", " + txtState.Text + " " + txtZip.Text;
MessageBox.Show(s, "Mailing Label",
MessageBoxButtons.OK);
btnClear.PerformClick();

}

10. Put this code in the btnClear_Click event method:

private void btnClear_Click(object sender, EventArgs e)
{

txtName.Text = "";
txtAddress.Text = "";
txtCity.Text = "";
txtState.Text = "";
txtZip.Text = "";
txtName.Focus();

}

11. Save the application (saved in the Example 1-1 folder in
VCSDB\Code\Class 1 folder). Run the application. Make sure it
functions as designed. Here’s the running program.

Note that you cannot enter mailing list information unless the timer is
running. Here’s the program after I entered some information:

and here’s what I see when I click Accept:

Summary
In this chapter, we introduced databases in general terms and how Visual
C# can be used to develop a front-end application to interact with the
database. And, we reviewed the steps involved in building a Visual C#
application.

In the second chapter, we take a closer look at databases. We look at their
structure, their terminology, and how they are constructed. You may be
asking - when do we get to do some programming? The answer - in a
couple more chapters. We want to make sure we have a firm foundation in
place before diving into actual coding.

2
Introduction to Databases

Review and Preview
In the last chapter, we looked at a database in very general terms. We
learned that the central parts of a Visual C# database application are the
ADO .NET data objects.

In this chapter, we provide more details into the structure of databases and
how they are created. We will use a sample database to illustrate the
concepts presented.

Database Structure and Terminology
In simplest terms, a database is a collection of information. This
collection is stored in one or more well-defined tables, or matrices.

The rows in a database table are used to describe similar items. The rows
are referred to as database records. In general, no two rows in a database
table will be alike.

The columns in a database table provide characteristics of the records.
These characteristics are called database fields. Each field contains one
specific piece of information. In defining a database field, you specify the
data type, assign a length, and describe other attributes. Some field types
include Binary, Boolean, Counter, Double, Single, Long, Integer, etc.

Here is a simple database example:

In this database table, each record represents a single individual. The
fields (descriptors of the individuals) include an identification number
(ID_No), Name, Date_of_Birth, Height, and Weight.

Most databases use indexes to allow faster access to the information in the
database. Indexes are sorted lists that point to a particular row in a table.
We can create an index for any field we might want to perform a search
on. The neat thing about an index is that the Visual C# data objects handle
all the details. We simply flag a field as an index and the code does the

work.

A database using a single table is called a flat database. Early database
software worked only with flat databases. And, for simple applications,
flat databases may be adequate. For large amounts of data, however, flat
databases are cumbersome and become very large, very quickly.

Relational Databases
Most databases are made up of many tables stored in a single file. Each
table contains a logical grouping of information with its own records and
fields. When using multiple tables within a database, the tables must have
some common fields to allow cross-referencing of the tables. The referral
of one table to another via a common field is called a relation. Such
groupings of tables are called relational databases.

Relational databases allow us to store vast amounts of data with far
simpler maintenance and smaller storage requirements than the equivalent
flat database. As an example, say we had a flat database listing products
stocked by a grocery store with several fields describing each product’s
manufacturer (manufacturer name, address, phone, ...). If you have 1,000
products made by the same manufacturer, there is much repetition of
information in the flat database. And, if the manufacturer changed their
phone number, you would have to make that change in 1,000 places! In a
relational database, you could use two tables, one for products, one for
manufacturers. In the product table, you would simply have a
manufacturer ID that would correspond with an ID in the manufacturer
table (a relation), which would have that manufacturer’s information.
Then, if the phone number changed, you would only have to change one
field in the manufacturer table - quite a savings in work! When you break
down database tables into simpler tables, the process is known as database
normalization.

Relations among tables in a relational database are established using keys.
A primary key is a field that uniquely identifies a record so it can be
referenced from a related table. A foreign key is a field that holds
identification values to relate records stored in other tables.

When one record in one table is linked to only one record in another table,
we say there is a one-to-one relation. When one record in one table links
to many records in another table, we say there is a one-to-many relation.
And, when many records in one table are linked to many records in
another table, we say there is a many-to-many relation.

In the first few chapters in this course, we will use a sample Microsoft
Access database. This relational database (BooksDB.accdb) is found in
the VCSDB\Databases folder installed with these notes. This database is a
classic, used by generations of programmers to understand database
programming. You will become very familiar with this database. It is a
database of books about computer programming (and databases). Let’s
look at its relational structure to illustrate the many new concepts being
introduced.

Using SQL Server Databases
You may notice that the sample used here (BooksDB.accdb) is a
Microsoft Access database. These notes were originally developed using
Access databases. If you prefer to use SQL Server databases, the notes
have been modified to allow this capability. In each chapter of the notes
look for sections entitled Using SQL Server Databases for particular
modifications needed in that particular chapter.

To use SQL Server databases, it is assumed you have installed SQL Server
on your computer. We use SQL Server Express 2014 version available as
a free download from Microsoft:

https://www.microsoft.com/en-us/download/details.aspx?id=42299

The website gives full installation instructions. Download the 64 bit
version.

Also, to use SQL Server databases, you need SQL Server versions of the
Access databases included with these notes. The SQL Server databases are
distinguished by an mdf file extension. If interested, these conversions
were created with another free Microsoft Product named SQL Server
Migration Assistant for Access. Information about this product can be
found at:

https://www.microsoft.com/en-us/download/details.aspx?id=43690

The remainder of the information in this chapter is independent of which
database product you choose to use.

http://www.microsoft.com/en-us/download/details.aspx?id=42299
http://www.microsoft.com/en-us/download/details.aspx?id=43690

Sample Relational Database
The books (BooksDB.accdb) database is made up of four tables:

Authors (6,246 records)
Publishers (727 records)
Titles (8,569 records)
Title_Author (16,056 records)

As you look at each table, pay attention to how the tables are logical
groupings of information. Examine the record and field structures. In
particular, note each field with an ‘ID’ in the name acts as a key to relate
one table to another.

The Authors table contains information about the authors of the books in
the database. The table has three (3) fields: Au_ID, Name, and Year_Born:

There are 6,246 different authors in the database.

The Publishers table contains information about the publishers in the book
database. The table has ten (10) fields: PubID, Name, Company_Name,
Address, City, State, Zip, Telephone, Fax, and Comments:

There are 727 different publishers in the database.

The Titles table contains information about each book title in the database.
The table has eight (8) fields: Title, Year_Published, ISBN, PubID,
Description, Notes, Subject, and Comments:

There are 8,569 distinct book titles in the database.

The Title_Author table contains information relating book titles to
authors within the database. It has just two fields: ISBN (International
Standard Book Number, a number used by bookstores and libraries to
reference books) and Au_ID:

There are 16,056 entries in this table. You may wonder - if there are 8,569
titles in the database, how can there be nearly twice as many entries in this
table. The answer is that many books have more than one author and this
table lists all the authors for each title.

There is obviously a lot of information in the books database! This
example, though, is very useful and shows the kind of database we can
work with using Visual C#. It is a well-designed database we can learn
from. We will discuss database design in a later chapter, so much of what
is discussed here will be very useful information later on. You may be
wondering – where did these views of the database tables come from?
They were obtained using Microsoft Access. In a couple of more chapters,
you will be able to obtain such views using Visual C#.

Sample Database Structure
Let’s examine the books database a little closer. To help, we’ll use this
block diagram (obtained using Access) that illustrates the database
structure:

This diagram shows each table as a separate window listing the
corresponding fields. Relations between tables are illustrated via linear
links.

Look at the books database tables. Note each table is a logical grouping of
information. Book publishers are in a single table (Publishers), book titles
are in a single table (Titles), and book authors are in a single table
(Authors). A well-designed database has such well-defined tables. Well-
defined tables make database management a far simpler task.

Note each table has two types of information: source data and relational
data. Source data is actual information, such as names, phone numbers,
and addresses. Relational data are references to data in other tables via
keys, such as PubID, ISBN, and Au_ID.

A primary key defines a unique record. PubID in the Publishers table,
ISBN in the Titles Table, and Au_ID in the Authors table are primary
keys. They identify a unique entry in their respective table.

A foreign key is a piece of relational information in one table that links to

information in another table. In the Titles table, PubID is a foreign key.
Using a PubID from this table in conjunction with the PubID primary key
in the Publishers table will provide us with complete information about a
particular publisher. In the Title_Author table, ISBN and Au_ID are
foreign keys.

How the keys are used in the database is shown via the linear links. For
example, PubID (a primary key) in the Publishers table relates to the
PubID (a foreign key) in the Titles table. The one (1) next to PubID in the
Publishers table and the infinity symbol (∞) next to PubID in the Titles
table show this is a one-to-many relationship. That is, there is one PubID
in the Publishers table, but this value may appear many times in the Titles
table.

There is also a one-to-many relationship between Au_ID (primary key) in
the Authors table and Au_ID (foreign key) in the Title_Author table. The
exact relationship between ISBN in the Titles table and ISBN in the
Title_Author table cannot be determined by Access (indicated by no
markings on the linear link). Such indeterminate links will happen
occasionally.

Virtual Database Tables
The primary purpose of the books database (BooksDB.accdb) is to track
information about book titles. Note each table gives us a piece of
information about a particular book, but to get all the information about a
book, we need all four tables.

Using the relational data in the four tables, we should be able to obtain a
complete description of any book in the database. Let’s look at one
example. Here’s an entry (a record) from the Titles table:

Title 1-2-3 Database Techniques
Year_Published 1990
ISBN 0-8802234-6-4
PubID 45
Description 29.95
Notes 650.0285536920
Subject [Blank]
Comments HF5548.4.L67A52 1989

Taking the ISBN into the Title_Author table will provide us with these
Au_ID values:

Au_ID 2467, 5265, 5266

Note the book has three authors. Using these Au_ID values in the Authors
table reveals author information:

Au_ID=2467
Author Stern, Nancy
Year_Born [Blank]

Au_ID=5265
Author Weil, Bill
Year_Born [Blank]

Au_ID=5266
Author Anderson, Dick
Year_Born [Blank]

A last relational move of using the PubID in the Publishers table will
give us complete details about the book publisher:

Name QUE CORP
Company_Name QUE CORP
Address 11711 N College Ave, Suite 140
City Carmel
State IN
Zip 46032
Telephone [Blank]
Fax [Blank]
Comments [Blank]

Once done, we know everything there is to know about this one particular
book “1-2-3 Database Techniques.” What we essentially have done is
formed one huge table with a single record and many, many fields. This
new view of the data in the database is called a virtual database table. It
is virtual because it doesn’t exist as a native table in the BooksDB.accdb
database – it was formed using the native four tables.

Making a query of the database created a virtual table above. We asked
the database to tell us everything it knew about the book “1-2-3 Database
Techniques.” The database responded (well, we really did the work) with
all information from its four tables. This is a very common task in database
management systems and one we will be doing often in this course,
querying the database. With each query of the database, we form a
virtual table that contains the results of our query. Our queries will not be
as comprehensive as the one made here (show me everything!). Usually,
the query will ask for all records that meet some particular criteria. As an
example, we might like to query the books database to show us all books
published by a specific company. The results of this query would be
returned in a virtual table.

Database queries are made with a specific language named SQL

(structured query language). We will study SQL in a later chapter. For
now, be aware that SQL can be used to form virtual tables from a database.
These tables show us information of interest from the database. And, with
Visual C# as the front-end, doing a query with SQL is simple. We form the
query, pass it on to the data objects and these objects do all the work for
us, returning all records that our query requested. It’s like magic! In the
first few chapters, we will be doing just that – opening the books database
and forming virtual tables we can view.

Creating a Database
Before leaving this database introduction, you may be asking yourself –
how are databases like the books database created? How are tables
defined? How are fields defined? How are records created?

Databases are created using commercial applications like Access, Oracle,
Microsoft SQL Server and others. Each of these products has a design
mode where you define a table and the fields that are part of the table. You
can also enter records into the table using these applications. The books
database was built with Access. In the first part of this course, we will
work with existing databases and will not be concerned with creating a
database.

Later chapters discuss proper database design and creation of databases. If
you have Access and know how to use it, you could also use that when the
time for creating a database arises. We will address other possibilities later
in the course, including using Visual C# to create a database.

Summary
In this chapter, we looked at our first database – the books database
(BooksDB.accdb) that is included with these course notes. We studied the
structure of a relational database, discussing tables, records, and fields.
Relationships using primary and foreign keys were illustrated.

The concept of a virtual table was introduced. Making a query of the
database forms virtual tables. In the next chapter, we begin learning how to
use Visual C# to connect to a database and process queries to form such
virtual tables.

3
Database Connection

Review and Preview
At this point, we have looked at databases and how they are structured. We
have seen that data objects work between the database and the Visual C#
‘front-end’ to manage the database.

In this chapter, for the first time, we use Visual C# to connect to a
database. This connection is made with the data objects we have been
referring to. Using data bound controls, in conjunction with the data
objects, will allow us to view information in the database.

Data Object Overview
Visual C# provides several objects that allow interaction with databases.
These objects fall in one of five categories:

⇒ Connections allow a program to connect to a database
⇒ Data containers hold data after it has been loaded from a database.
⇒ Data adapters move data between databases and containers
⇒ Command objects allow manipulation of the data
⇒ Navigation objects allow a user to move through (and also modify)

data

Some objects (data containers, data adapters, navigation objects) are
generic in nature and work with any type of database.

Connection objects and command objects are specific to the type of
database being used. Visual C# provides objects that work with Object
Linking and Embedding Databases (OLE DB), SQL Server, including the
Microsoft Data Engine (MSDE), Open Database Connectivity (ODBC)
and Oracle databases. Don’t worry if you don’t understand all this, right
now. In these notes, we will work with Access databases (OLE DB) and
SQL Server databases. In the final chapter, we’ll look at connecting to
other databases.

We will look at each data object in detail. As we progress through our
discussion of these objects, we will gradually open and view items from
the books database using Visual C#.

Connection Object
The connection object establishes a connection between your application
and the database.

As mentioned, Visual C# supports several databases types. Hence, it offers
several different connection objects: OleDbConnection, SqlConnection,
OdbcConnection, OracleConnection.

Connection object properties:

ConnectionString Contains the information used to establish a
connection to a database.

Database Name of the current database.
DataSource Name of the current database file.
State Current connection state (Closed, Connecting,

Open, Executing, Fetching, Broken)

Connection object methods:

Open Open the connection.
Close Close the connection.
Dispose Dispose of the connection object.

Connection Object - Access Database
To use the OleDbConnection object and other OLE database objects, an
application must have this line at the top of the corresponding code listing:

using System.Data.OleDb;

Every Access example we build in this class will have this line.

To declare and construct an OleDbConnection object named
myConnection, using a ConnectionString named myConnectionString,
use:

OleDbConnection myConnection;
myConnection = new OleDbConnection(myConnectionString);

The ConnectionString for an Access database is the following string:

Provider=Microsoft.ACE.OLEDB.12.0; Data Source =
DatabaseName

where DatabaseName is a complete path to the database.

We’re about to start looking at the books database (BooksDB.accdb)
discussed in Chapter 2. This database is found in the VCSDB\Databases
directory. Make a copy of the database and place it in a working directory
(you decide on a name – we will use VCSDB\Working). We do this to
insure there is always a valid copy of BooksDB.accdb on your computer.
You will see that the power of the Visual C# opens up the possibility of
doing damage to a database (we, of course, will try to minimize this
possibility). So, we are just living by the adage, “Better safe, than sorry.”

Access Databases and 64-Bit
Operating Systems
The Access databases used in these notes only work with 32-bit operating
systems. If you are using a 64-bit version of Visual Studio, you need to
make one change to each project you build.

Follow these steps:

➢ Once your project is built, choose the Project menu item, and select
your project’s Properties entry.

➢ In the window that appears, choose the Build tab.
➢ Under Platform target, make sure the selection is x86, not

AnyCPU. The changed window should look like this:

➢ Close the window to finalize the change.

How will you know if you have an operating system problem? The first
symptom is that your application will have no data displayed, indicating
the database did not open correctly. Secondly, the Immediate Window
will have this error message:

An unhandled exception of type 'System.InvalidOperationException'
occurred in System.Data.dll

Or, when opening the database, you may see this window:

If you see such symptoms, make the above note correction to your
project’s properties.

Connection Object - SQL Server
Database
To use the SqlConnection object, an application must have this line at the
top of the corresponding code listing:

using System.Data.SqlClient;

Every SQL Server example we build in this class should have this line.

To declare and construct an SqlConnection object named myConnection,
using a ConnectionString named myConnectionString, use:

SqlConnection myConnection;
myConnection = new SqlConnection(myConnectionString);

The ConnectionString for an SQL Server database is the following string:

Data Source=SQLInstanceName;
AttachDbFilename=DatabaseName; Integrated Security=True;
Connect Timeout=30; User Instance=True

where SQLInstanceName is the name of your SQL Server instance (set
when installed; if using default SQL Server Express settings, name is
.\SQLEXPRESS) and DatabaseName is a complete path to the database.

We’re about to start looking at the books database (SQLBooksDB.mdf),
SQL Server version of BooksDB.accdb). Make a copy of the database and
place it in a working directory (you decide on a name – we will use
VBDB\Working).

Example 3-1

Accessing the Books Database
After copying the database (BooksDB.accdb or SQLBooksDB.mdf) to
your working directory, start a new application. Our end goal with this
application is to develop a form where we can look through the Titles
table in the books database. We start by simply opening the database using
a connection object.

1. Place a single label control on the form.

2. Set the following properties:

Form1:
Name frmTitles
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Titles Database

label1:
Name lblState
AutoSize True
BackColor White
BorderStyle Fixed3D
Text [blank]

When done, the form will look something like this:

All the extra space will be used as we continue building this application.

3. Open the code window and add this line at the top:

Access Database:

using System.Data.OleDb;

SQL Server Database:

using System.Data.SqlClient;

4. Use this form level declaration to declare the connection:

Access Database:

OleDbConnection booksConnection;

SQL Server Database:

SqlConnection booksConnection;

5. Add this code to the frmTitles_Load method:

Access Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();

}

SQL Server Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new SqlConnection("Data

Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();
//close the connection
booksConnection.Close();

//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();

}

In this code we construct the connection using the proper connection
string. Notice the connection string assumes the database is in the
c:\VCSDB\Working folder. You will have to change this if your working
copy of the database is located elsewhere. Then, we simply open, close
and dispose of the connection. The status is displayed in the lblState
control.

The Access Database finished code should be (lines added are shaded):

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Data.OleDb;
namespace Example_3_1
{

public partial class frmTitles : Form
{

public frmTitles()
{

InitializeComponent();
}
OleDbConnection booksConnection;
private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();

}
}

}

The SQL Server Database finished code should be (lines added are
shaded):

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Data.SqlClient;
namespace Example_3_1
{

public partial class frmTitles : Form
{

public frmTitles()

{
InitializeComponent();

}
SqlConnection booksConnection;
private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new SqlConnection("Data

Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();

}
}

}

6. Save the application. Run the application. You should see:

This shows that the connection was opened and then closed. If you do not
see this or you get an error message, make sure your connection string is
correct and the books database is really located where you (and your
connection string) thinks it is.

Command Object
The command object is used to define commands to send to the database.
In this course, these commands will be SQL queries. We’ll learn SQL in
Chapter 4. For now, we’ll just give you any queries you may need.

Command objects are used by data adapter objects (discussed next) to
create datasets which hold data tables (discussed after data adapters). The
information in these tables can then be viewed in a Visual C# application:

Command Object – Access Database
To declare and construct an OleDbCommand object named
myCommand using a SQL query named myQuery for a connection
object named myConnection, use:

OleDbCommand myCommand;
myCommand = new OleDbCommand(myQuery, myConnection)

After a quick example, we see how to use such an object with a data
adapter to create a data table.

Command Object – SQL Server
Database
To declare and construct an SqlCommand object named myCommand
using a SQL query named myQuery for a connection object named
myConnection, use:

SqlCommand myCommand;
myCommand = new SqlCommand(myQuery, myConnection)

After a quick example, we see how to use such an object with a data
adapter to create a data table.

Example 3-1 (Command Object)

Accessing the Books Database
We add a command object to our example. We need a SQL query to
retrieve data from the Titles table of the books database. The query that
does this is:

Select * From Titles

This says select all fields (* is a wildcard) from the Titles table.

1. Add this form level declaration:

Access Database:

OleDbCommand titlesCommand;

SQL Server Database:

SqlCommand titlesCommand;

2. Add the shaded code to the frmTitles_Load method:

Access Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

//open the connection
booksConnection.Open();
//display state

lblState.Text = booksConnection.State.ToString();
// establish command object
titlesCommand = new OleDbCommand("Select * from Titles",

booksConnection);
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();

}

SQL Server Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new SqlConnection("Data

Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();
// establish command object
titlesCommand = new SqlCommand("Select * from Titles",

booksConnection);
//close the connection
booksConnection.Close();
//display state

lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();

}

This code creates the command object for the books connection object.

3. Resave and rerun the application, making sure you get no errors.

DataAdapter Object
As just seen, a data adapter object uses a command object to transfer
data between a connection object and a dataset containing one or more
data table(s). For our initial work, we will use a data adapter to directly
form a data table (discussed next), without using a dataset. In general, you
need one data adapter object for each table of data you want to view.

Data adapter properties:

DeleteCommand Command object that allows the adapter to
delete rows from a data table.

InsertCommand Command object that allows the adapter to
insert rows into a data table.

SelectCommand Command object that the adapter uses to
select rows for a data table.

UpdateCommand Command object that the adapter uses to
update rows in a data table.

Data adapter methods:

Fill Fills the data adapter with a given data table.
Update Updates the data table held by the data

adapter.

DataAdapter Object – Access
Database
To declare and construct an OleDbDataAdapter named myAdapter, use:

OleDbDataAdapter myAdapter;
myAdapter = new OleDbDataAdapter();

We specify the SelectCommand (myCommand, a command object) with
a SQL query to select the rows that will make up the corresponding data
table.

myAdapter.SelectCommand = myCommand;

Once the SelectCommand is specified, the other command objects
(DeleteCommand, InsertCommand, UpdateCommand) are built using
a command builder object. The statement that accomplishes this task for
our example adapter (myAdapter) is:

OleDbCommandBuilder myCommandBuilder = new
OleDbCommandBuilder(myAdapter);

Once this line is executed, the three command objects can be viewed (if
desired) by examining:

myCommandBuilder.GetDeleteCommand.CommandText
myCommandBuilder.GetInsertCommand.CommandText
myCommandBuilder.GetUpdateCommand.CommandText

We really don’t ever look at these command objects – they are used by the
Update method of the data adapter. We look at that method in Chapter 5
when we start our study of database management tasks.

Believe it or not, we’re getting close to seeing some actual data! The data
adapter’s Fill method accomplishes this task, but first we need to look at

datasets and data tables.

DataAdapter Object – SQL Server
Database
To declare and construct an SqlDataAdapter named myAdapter, use:

SqlDataAdapter myAdapter;
myAdapter = new SqlDataAdapter();

We specify the SelectCommand (myCommand, a command object) with
a SQL query to select the rows that will make up the corresponding data
table.

myAdapter.SelectCommand = myCommand;

Once the SelectCommand is specified, the other command objects
(DeleteCommand, InsertCommand, UpdateCommand) are built using
a command builder object. The statement that accomplishes this task for
our example adapter (MyAdapter) is:

SqlCommandBuilder myCommandBuilder = new
SqlCommandBuilder(myAdapter);

Once this line is executed, the three command objects can be viewed (if
desired) by examining:

myCommandBuilder.GetDeleteCommand.CommandText
myCommandBuilder.GetInsertCommand.CommandText
myCommandBuilder.GetUpdateCommand.CommandText

We really don’t ever look at these command objects – they are used by the
Update method of the data adapter. We look at that method in Chapter 5
when we start our study of database management tasks.

Believe it or not, we’re getting close to seeing some actual data! The data
adapter’s Fill method accomplishes this task, but first we need to look at

datasets and data tables.

DataSet Object
A dataset object provides all the features you need to build, load, store,
manipulate and save data in a relational database. It is a ‘container’ for
multiple data table objects.

Dataset properties:

DataSetName Name assigned to dataset.
Tables A collection of data tables stored in the

dataset.

To declare and construct a DataSet named myDataSet, use:

DataSet myDataSet;
myDataSet = new DataSet()

To add a data table (myTable) to a dataset, use:

myDataSet.Tables.Add(myTable);

We don’t use data set objects a lot in this course. We prefer to work
directly with data tables.

DataTable Object
A data table object represents the data contained in one table of a dataset
object.

Data table properties:

Columns Collection of DataColumn objects that define
information in the columns of the table.

DataSet The DataSet object (if any) that contains this
DataTable.

DefaultView A DataView representing the DataTable
contents.

Rows Collection of DataRow objects that define
each table row.

TableName Name of data table.

Data table methods:

Clear Removes all rows from data table.
Copy Makes a copy of the data table.
ImportRow Copies a DataRow object into the data table.
NewRow Creates a new DataRow object for the data

table.

To declare and construct a data table named myTable, use:

DataTable myTable;
myTable = new DataTable();

Once the table is created, it is filled with data using the Fill method for a
corresponding data adapter control. If that adapter is myAdapter, the
syntax is:

myAdapter.Fill(myTable);

At this point, we have a data table (formed using by sending a SQL query
to the database) we can view in a Visual C# application.

DataRow Object
A data row object represents the information in one record of a data table.
It is very useful for retrieving and/or modifying individual fields in a
record.

Data row properties:

Item Gets or sets one of the row’s fields. The
parameter can be the column index or the
field name.

Table Reference to data table containing the row.

Data row methods:

BeginEdit Puts data row in edit mode.
CancelEdit Cancels the current edit on the data row.
Delete Deletes the row from the data table.

We will look at data rows in more detail later in the course, especially in
the example projects in Chapter 10.

Example 3-1 (Data Table)

Accessing the Books Database
We add a data adapter object and a data table object to our example. The
data table associated with the data adapter will have the Titles table from
the books database.

1. Add these form level declarations:

Access Database:

OleDbDataAdapter titlesAdapter;
DataTable titlesTable;

SQL Server Database:

SqlDataAdapter titlesAdapter;
DataTable titlesTable;

2. Add the shaded code to the frmTitles_Load method:

Access Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();

// establish command object
titlesCommand = new OleDbCommand("Select * from Titles",

booksConnection);
// establish data adapter/data table
titlesAdapter = new OleDbDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();

}

SQL Server Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new SqlConnection("Data

Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();

// establish command object
titlesCommand = new SqlCommand("Select * from Titles",

booksConnection);
// establish data adapter/data table
titlesAdapter = new SqlDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();

}

This new code creates the data adapter and loads it with data from the
Titles table.

3. Resave and rerun the application. Again, make sure there are no errors.
If no errors occur, you have successfully created a data table. Next, we
look at how to view information from this table in a Visual C#
application.

Data Bound Controls
We have seen that the ADO .NET data objects allow us to connect to a
database and form a data table. Yet, these objects do not provide us with
any way to view the information in a database. To view the information,
we use data bound controls that are special controls with properties
established by database fields. A data bound control is needed for each
field (column) in the database table you need to view. Most of the standard
Visual C# tools can be used as data bound controls.

Some data bound data controls (using simple binding) are:

Label Can be used to provide display-only access to
a specified text data field. The label Text
property is usually bound.

Text Box Can be used to provide read/write access to a
specified text data field. Probably, the most
widely used data bound tool. Text property is
usually bound.

Check Box Used to provide read/write access to a
Boolean field. Value property is data bound.

Picture Box Used to display a graphical image from a
bitmap, icon, gif, jpeg, or metafile file.
Provides read/write access to a image/binary
data field. Image property is data bound.

Other controls using complex binding (look at in further detail later in this
course):

List Box Can be used to display all values of a
particular field in a database.

Combo Box Can be used to display all values of a
particular field in a database.

Data Grid View Can be used to display an entire database
table.

To bind a particular property (myProperty) of a control (myControl) to a
particular field (myField) of a data table object (myTable), the syntax is:

myControl.DataBindings.Add(myProperty, myTable, myField);

So, every control that is to be bound to a database field needs a statement
like this. The bindings are usually done in the initial form’s Load method.

To clear a previously defined data binding, the syntax is:

myControl.DataBindings.Clear();

Example 3-1 (Data Binding)

Accessing the Books Database
We now add some controls that are bound to fields in the Titles database
table so we can view some data.

1. Remove the label control used to display state (we know things are
working okay by now).

2. Add four label controls and four text box controls, so the form looks like
this:

3. Set the following properties:

Label1:
Text Title

Label2:
Text Year Published

Label3:

Text ISBN

Label4:
Text Publisher ID

Text Box1:
Name txtTitle
BackColor White
ReadOnly True
MultiLine True

Text Box2:
Name txtYearPublished
BackColor White
ReadOnly True
MultiLine True

Text Box3:
Name txtISBN
BackColor White
ReadOnly True
MultiLine True

Text Box4:
Name txtPubID
BackColor White
ReadOnly True
MultiLine True

The finished form should appear as:

4. Add the shaded lines to the frmTitles_Load method. These lines bind
the four text boxes to their respective fields in the Titles table. Remove
the lines referring to lblState (we removed that control).

Access Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

//open the connection
booksConnection.Open();
// establish command object
titlesCommand = new OleDbCommand("Select * from Titles",

booksConnection);
// establish data adapter/data table
titlesAdapter = new OleDbDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);

// bind controls to data table
txtTitle.DataBindings.Add("Text", titlesTable, "Title");
txtYearPublished.DataBindings.Add("Text", titlesTable,
"Year_Published");
txtISBN.DataBindings.Add("Text", titlesTable, "ISBN");
txtPubID.DataBindings.Add("Text",titlesTable, "PubID");
//close the connection
booksConnection.Close();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();

}

SQL Server Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new SqlConnection("Data

Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();
// establish command object
titlesCommand = new SqlCommand("Select * from Titles",

booksConnection);
// establish data adapter/data table

titlesAdapter = new SqlDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
// bind controls to data table
txtTitle.DataBindings.Add("Text", titlesTable, "Title");
txtYearPublished.DataBindings.Add("Text", titlesTable,
"Year_Published");
txtISBN.DataBindings.Add("Text", titlesTable, "ISBN");
txtPubID.DataBindings.Add("Text",titlesTable, "PubID");
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();

}

5. Resave and rerun the application. You should see:

At long last, we see some data in our Visual C# application. The first
record in the Titles table is being displayed. We still have no way of
navigating through the table. We add that capability next with a very
powerful data object, the CurrencyManager object.

CurrencyManager Object
A final component we need to view data is a currency manager object.
Once associated with a data table object, the currency manager not only
allows navigation through the rows of the table, but also provides several
database management tasks such as editing, adding record and deleting
records.

Currency manager object properties:

Bindings Collection of controls bound to this manager.
Count Number of rows in table associated with

manager.
Position Gets or sets the current row in the data table

(ranges from 0 to Count – 1).

Currency manager methods:

AddNew Add a new row to the data source.
CancelCurrentEdit Cancels the current editing operation.
EndCurrentEdit Ends the current editing operation, accepting

any changes.
Refresh Refreshes the bound controls.
RemoveAt Removes the indicated data row.

For now, we look specifically at the navigational abilities of the currency

manager object. First, declare a currency manager object (myManager)
using:

CurrencyManager myManager;

We use the BindingContext of the associated data table to establish a
reference for the currency manager. For a table named myTable, we use
this syntax:

myManager = (CurrencyManager)
this.BindingContext[myTable];

This simply converts the binding context information of the table into a
currency manager object.

Once the currency manager object is established, basic navigation among
the Count rows in the data table is accomplished via a simple modification
of the Position property. Look at the final incarnation of Example 3-1 to
see its use in such a manner.

Example 3-1 (Final Version)

Accessing the Books Database
Lastly, we add some controls that allow navigation through the rows of the
Titles database table

1. Add four button controls so the form looks like this:

2. Set the following properties:

Button1:
Name btnFirst
Text &First

Button2:
Name btnPrevious
Text &Previous

Button3:
Name btnNext
Text &Next

Button4:
Name btnLast
Text &Last

The finished form is:

3. Add this form level declaration:

CurrencyManager titlesManager;

4. Add the shaded lines to the frmTitles_Load method. These lines set up
the currency manager reference to the Titles table.

Access Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

//open the connection
booksConnection.Open();

// establish command object
titlesCommand = new OleDbCommand("Select * from Titles",

booksConnection);
// establish data adapter/data table
titlesAdapter = new OleDbDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
// bind controls to data table
txtTitle.DataBindings.Add("Text", titlesTable, "Title");
txtYearPublished.DataBindings.Add("Text", titlesTable,
"Year_Published");
txtISBN.DataBindings.Add("Text", titlesTable, "ISBN");
txtPubID.DataBindings.Add("Text",titlesTable, "PubID");
// establish currency manager
titlesManager = (CurrencyManager)

BindingContext[titlesTable];
//close the connection
booksConnection.Close();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();

}

SQL Server Database:

private void frmTitles_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new SqlConnection("Data

Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;

Integrated Security=True; Connect Timeout=30; User
Instance=True");

//open the connection
booksConnection.Open();
//display state
lblState.Text = booksConnection.State.ToString();
// establish command object
titlesCommand = new SqlCommand("Select * from Titles",
booksConnection);
// establish data adapter/data table
titlesAdapter = new SqlDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
// bind controls to data table
txtTitle.DataBindings.Add("Text", titlesTable, "Title");
txtYearPublished.DataBindings.Add("Text", titlesTable,
"Year_Published");
txtISBN.DataBindings.Add("Text", titlesTable, "ISBN");
txtPubID.DataBindings.Add("Text",titlesTable, "PubID");
// establish currency manager
titlesManager = (CurrencyManager)

BindingContext[titlesTable];
//close the connection
booksConnection.Close();
//display state
lblState.Text += booksConnection.State.ToString();
//dispose of the connection object
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();

}

5. Add these four Click methods for the navigation buttons; each method
simply modifies the Position property accordingly:

private void btnFirst_Click(object sender, EventArgs e)
{

titlesManager.Position = 0;
}

private void btnPrevious_Click(object sender, EventArgs e)
{

titlesManager.Position--;
}

private void btnNext_Click(object sender, EventArgs e)
{

titlesManager.Position++;
}

private void btnLast_Click(object sender, EventArgs e)
{

titlesManager.Position = titlesManager.Count - 1;
}

6. Save the application one last time (Access version saved in the
Example 3-1 folder in VCSDB\Code\Class 3 folder; SQL Server
version saved in the Example 3-1 SQL folder in VCSDB\Code\Class
3 folder). Run the application. Try out the navigation buttons. Notice
how all the fields update with each click of a button. Here’s the second
record (I clicked Next once).

Here’s the last record:

There’s one last thing. If you load this example from the code
accompanying the course, you may need to modify the line of code
constructing the booksConnection object. The modification is needed if
your working copy of the books database (either the Access version,
BooksDB.accdb, or the SQL Server version, SQLBooksDB.mdf) is not in
the same directory indicated in code. In fact, you will have to do this
anytime you use the examples provided with the course.

Data Wizards
When learning new material, many times you are taught the “hard way” to
do something before learning the “easy way.” We’re going to show you an
easier way to build the application we just built by using Visual C#’s data
wizards. Wizards are just that – tools that make your life easier. You will
see Example 3-1 can be rebuilt without writing a single line of code!

Even though wizards are easy to use, they have their drawbacks. That’s
why you haven’t seen wizards yet – we will always use the “hard way”
(data objects) to connect to databases. Wizards provide quick results, but
their results are many times inflexible. For databases, the big drawback is
that connection information is hard-coded into your programs, making
distribution to others very difficult.

Look through Example 3-2 if you like. It steps you through use of data
wizards to rebuild Example 3-1. You’ll see that wizards are pretty cool! I
still use them for quickly building applications for personal use. And
they’re great for quick testing of database application concepts. You
decide if you like them or not. As mentioned, they will not be used in this
course.

Example 3-2 (Access Database)

Books Database with Wizards
We will rebuild Example 3-1 using data wizards – an application where we
can look at a few fields in the Titles table of the books database
(BooksDB.accdb).

1. Start a new application with just a form. Set the following properties:

Form1:
Name frmTitles
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Titles Database

The form should look something like this:

2. We now connect to the database. There are many steps. Select the
Project menu option and choose Add New Data Source. This window
will appear:

Choose the Database icon and click Next. You will see a screen asking
what database model you want to use. Choose Dataset and click Next.

You next specify where the database is located:

There may or may not be a connection listed in the drop down box. Here is
where we will form a needed Connection string to connect to the
database. Click New Connection.

In the next screen, you will see:

As shown, choose Microsoft Access Database File. This is the proper
choice for a Microsoft Access database. Click Continue.

You are shown to the Add Connection window:

Click the Browse button and point to the BooksDB.accdb database in
your working folder – here it is VCSDB\Working). Once selected, click
Test Connection to insure a proper connection.

Once the connection is verified, click OK and you will be returned to the
Data Source Configuration Wizard main screen. Click Next and you
may be asked if you want to copy the database to your project:

For our example, answer No.

The next screen shows:

The connection string specifies what database fields are used to form the
dataset. Choose the default connection string and click Next. The database
connection is finally complete.

3. We now need to specify the DataSet or table of data we want to

generate. We want to choose the Title, Year_Published, ISBN and
PubID fields in the Titles table. Expand the Tables object, then choose
the Titles table and place checks next to the desired fields:

Once these selections are done, click Finish to complete specification of
the DataSet.

4. Choose the View menu option, then Other Windows and click Data
Sources. Pin this window to the IDE. Look in the Data Sources
window in your project and you should see the newly created DataSet
object (booksDataSet). The dataset contains one table (Titles):

To form this DataTable, Visual C# ‘queried’ the database (generating its
own SQL statement) to pull the Title, Year_Published, ISBN and PubID
fields out of the database.

5. Here’s where the magic begins. Click the Title field in the Data
Sources window, then drag and drop it onto the form. You will see:

The wizard has created a label and a data bound text box for the Title
field. It has also added a navigation tool at the top (you should recognize
buttons to move to the first, previous, next and last records, respectively).
Below the form are:

We recognize the booksDataSet object. The titlesTableAdapter object is
a DataAdapter that controls communication between the books database
and the dataset. The titlesBindingSource and titlesBindingNavigator
controls navigation through the dataset. The wizard has essentially done all
the steps of doing a connection, establishing a command object, creating a
data adapter, a data table and a navigation object. These are all steps we
did with code in Example 3-1.

6. Drag and drop the three other fields (Year_Published, ISBN, PubID)
from the data source window onto the form. Resize things until it
resembles this:

7. Save the application (saved in the Example 3-2 folder in
VCSDB\Code\Class 3 folder). Run the application. Try out the
navigation buttons. Notice how all the fields update with each click of a
button. Here’s the first record:

Here’s the last record:

There’s lots of power with this data wizard. A tool to view the Titles table
was built without writing a line of code. The power of the wizard is its
downfall, however. If you don’t like the appearance of the navigation tool,
you can’t use the wizard. All of the information used to build the database
connection and other objects is hard-coded into the application. So, if the
BooksDB.accdb database is not in the specific folder designated when
building the connection, the application will not work.

You decide where data wizards fit within your arsenal of database
programming tools. I use them for quick personal applications and to test
various database management tasks.

Example 3-2 (SQL Server Database)

Books Database with Wizards
We will rebuild Example 3-1 using data wizards – an application where we
can look at a few fields in the Titles table of the books database
(BooksDB.accdb).

1. Start a new application with just a form. Set the following properties:

Form1:
Name frmTitles
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Titles Database

The form should look something like this:

2. We now connect to the database. There are many steps. Select the Data
menu option and choose Add New Data Source. This window will
appear:

Choose the Database icon and click Next. You will see a screen asking
what database model you want to use. Choose Dataset and click Next.

You next specify where the database is located:

There may or may not be a connection listed in the drop down box. Here is
where we will form a needed Connection string to connect to the
database. Click New Connection.

In the next screen, you will see:

Make sure the Data source shows Microsoft Sql Server. If not, click
Change to see:

As shown, choose Microsoft Sql Server. Click OK.

You will return to the Add Connection window:

Type your SQL Server name in Server Name. Choose Attach a database
file and click the Browse button and point to the SQLBooksDB.mdf
database in your working folder – here it is VCSDB\Working).

Click the Advanced button to see:

As shown, change the User Instance property to True (needed because
SQL Server is on your account). Click OK to return to the Add
Connection window. Click Test Connection to insure a proper
connection.

Once the connection is verified, click OK and you will be returned to the
Data Source Configuration Wizard main screen. Click Next and you
may be asked if you want to copy the database to your project:

For our example, answer No.

The next screen shows:

The connection string specifies what database fields are used to form the
dataset. Choose the default connection string and click Next. The database
connection is finally complete.

3. We now need to specify the DataSet or table of data we want to
generate. We want to choose the Title, Year_Published, ISBN and
PubID fields in the Titles table. Expand the Tables object, then choose
the Titles table and place checks next to the desired fields:

Once these selections are done, click Finish to complete specification of
the DataSet.

4. Choose the View menu option, then Other Windows and click Data
Sources. Pin this window to the IDE. Look in the Data Sources
window in your project and you should see the newly created DataSet
object (booksDataSet). The dataset contains one table (Titles):

To form this DataTable, Visual C# ‘queried’ the database (generating its
own SQL statement) to pull the Title, Year_Published, ISBN and PubID
fields out of the database.

5. Here’s where the magic begins. Click the Title field in the Data

Sources window, then drag and drop it onto the form. You will see:

The wizard has created a label and a data bound text box for the Title
field. It has also added a navigation tool at the top (you should recognize
buttons to move to the first, previous, next and last records, respectively).
Below the form are:

We recognize the SQLBooksDataSet object. The TitlesTableAdapter
object is a DataAdapter that controls communication between the books
database and the dataset. The TitlesBindingSource and
TitlesBindingNavigator controls navigation through the dataset. The
wizard has essentially done all the steps of doing a connection,
establishing a command object, creating a data adapter, a data table and a
navigation object. These are all steps we did with code in Example 3-1.

6. Drag and drop the three other fields (Year_Published, ISBN, PubID)
from the data source window onto the form. Resize things until it
resembles this:

7. Save the application (saved in the Example 3-2 SQL folder in
VCSDB\Code\Class 3 folder). Run the application. Try out the
navigation buttons. Notice how all the fields update with each click of a
button. Here’s the first record:

Here’s the last record:

There’s lots of power with this data wizard. A tool to view the Titles table
was built without writing a line of code. The power of the wizard is its
downfall, however. If you don’t like the appearance of the navigation tool,
you can’t use the wizard. All of the information used to build the database
connection and other objects is hard-coded into the application. So, if the
SQLBooksDB.mdf database is not in the specific folder designated when
building the connection, the application will not work.

You decide where data wizards fit within your arsenal of database
programming tools. I use them for quick personal applications and to test
various database management tasks.

Using SQL Server Databases in
Examples
In the two examples in this chapter, we built one for Access databases and
one for SQL Server databases. I think you’ll agree there is not a lot of
difference in building each type of application.

In future chapters and in Example 3-3, we will only build Access versions
of each example and give you the few steps needed to adapt the example to
a SQL Server database. Look for areas titled Using SQL Server
Databases at the end of each example.

Summary
In this chapter, we finally used Visual C# to connect to an actual database
(both Access and SQL Server versions). We used several ADO .NET data
objects to connect to and view the Titles table of the books database using
data bound controls.

The objects used were:

Connection Object Forms connection to the database.
Command Object Forms SQL query to retrieve data table

from database.
Data Adapter Object Uses command object to transfer data

between database and data table.
Data Table Object Holds the table of data retrieved by the

data adapter object.
Data Bound Controls Controls ‘bound’ to fields of the data

table object.
Currency Manager
Object

Manages the controls bound to the data
table. Provides both navigation and
editing capabilities.

We looked at the Visual C# data wizard. The wizard is good for quick
prototyping of database applications, but its inflexibility for distribution
purposes makes it unsuitable for our work here.

Even after all the work we’ve done, all we can do right now is view
database tables, which in some applications is sufficient (think of your
local library – they certainly don’t want patrons changing information in
their database). To build a complete database management system, we
need to know SQL, the powerful language behind database queries. This is
discussed in the next chapter.

If you’re feeling overwhelmed by all the material presented thus far, don’t
worry – you’ll see it many more times as you continue through this course
and become a more proficient database programmer.

Example 3-3

Northwind Traders Database
A second sample database is included with these notes. The Access
version is NWIND.MDB, located in the VCSDB\Databases folder. This
database is used by a fictional company (Northwind Traders) It has eight
tables. In this exercise, we repeat the tasks of Example 3-1, using one table
(Customers) in this database. The SQL statement (used in the command
object) to do this is:

Select * from Customers

This example gives you further practice in using the ADO .NET data
objects and data bound controls and allows you to study the structure of
another database.

1. Copy NWIND.MDB to your working directory and start a new
application. We’ll develop a form where we can look through the
Customers table in the Northwind Traders database. Place four label,
four text boxes, and four buttons on the form.

2. Set the following properties for each control. For the data control and
the four text boxes, make sure you set the properties in the order given.

Form1:
Name frmCustomers
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Customers Database

Label1:
Text Customer ID

Label2:

Text Company Name

Label3:
Text Contact Name

Label4:
Text Contact Title

TextBox1:
Name txtCustomerID
BackColor White
ReadOnly True
MultiLine True

TextBox2:
Name txtCompanyName
BackColor White
ReadOnly True
MultiLine True

TextBox3:
Name txtContactName
BackColor White
ReadOnly True
MultiLine True

TextBox4:
Name txtContactTitle
BackColor White
ReadOnly True
MultiLine True

Button1:
Name btnFirst
Text &First

Button2:

Name btnPrevious

Text &Previous

Button3:
Name btnNext
Text &Next

Button4:
Name btnLast
Text &Last

When done, the form will look something like this:

3. Add this line at the top of the code window:

using System.Data.OleDb;

4. Form level declarations to create data objects:

OleDbConnection NWindConnection;
OleDbCommand customersCommand;
OleDbDataAdapter customersAdapter;
DataTable customersTable;
CurrencyManager customersManager;

5. Add this code the frmCustomers_Load method:

private void frmCustomers_Load(object sender, EventArgs e)
{

// connect to NWind database
NWindConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\NWindDB.accdb");

//open the connection
NWindConnection.Open();
// establish command object
customersCommand = new OleDbCommand("SELECT *
FROM Customers", NWindConnection);
// establish data adapter/data table
customersAdapter = new OleDbDataAdapter();
customersAdapter.SelectCommand = customersCommand;
customersTable = new DataTable();
customersAdapter.Fill(customersTable);
// bind controls to data table
txtCustomerID.DataBindings.Add("Text", customersTable,
"CustomerID");
txtCompanyName.DataBindings.Add("Text", customersTable,
"CompanyName");
txtContactName.DataBindings.Add("Text", customersTable,
"ContactName");
txtContactTitle.DataBindings.Add("Text",customersTable,
"ContactTitle");
// establish currency manager
customersManager = (CurrencyManager)

BindingContext[customersTable];
//close the connection
NWindConnection.Close();
//dispose of the connection object
NWindConnection.Dispose();

customersCommand.Dispose();
customersAdapter.Dispose();
customersTable.Dispose();

}

6. Code for the four button Click events to allow navigation:

private void btnFirst_Click(object sender, EventArgs e)
{

customersManager.Position = 0;
}

private void btnPrevious_Click(object sender, EventArgs e)
{

customersManager.Position--;
}

private void btnNext_Click(object sender, EventArgs e)
{

customersManager.Position++;
}

private void btnLast_Click(object sender, EventArgs e)
{

customersManager.Position = customersManager.Count - 1;
}

7. Save the application (saved in the Example 3-3 folder in
VCSDB\Code\Class 3 folder). Run the application. Cycle through the
various customers using the navigation buttons. Here’s the last record:

Example 3-3

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the Northwind Traders database
(SQLNWindDB.mdf) can be downloaded from our web site, as
explained in Chapter 2, or if you have a CD-ROM of these notes, it is
also in the VCSDB\Databases folder. Copy SQLNWindDB.mdf to
your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. Use these statements to declare the data objects:

SqlConnection NWindConnection;
SqlCommand customersCommand;
SqlDataAdapter customersAdapter;

4. In frmCustomers_Load method, use this connection object:

NWindConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLNWindDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

4
Database Queries with SQL

Review and Preview
At this point in our study, we can view any table that is part of a database
(a native table). A powerful feature of any database management system
is to have the ability to form any view of the data we desire. The formation
of such virtual tables is discussed in this chapter.

Virtual data views are obtained by querying the database. The language
used for such queries is the structured query language, or SQL. In this
chapter, we will learn how to use SQL to extract desired information from
a database. Note SQL is not just used with Visual C# database
applications. It is the standard language for database queries, hence all
material learned here can be transferred to other database management
systems.

SQL Background
SQL was developed at IBM in the early 1970’s, coincident with relational
database theory developed by E. F. Codd. SQL succeeded a previous
database language called Sequel - hence, SQL is the “sequel to Sequel.”
Because of this, many programmers pronounce SQL as “sequel.” The
correct pronunciation is “ess-que-ell,” that is, just say the letters.

SQL is a set of statements that tell a database engine (such as the ADO
.NET engine with Visual C#) what information the user wants displayed.
The engine then processes that set of statements, as it sees fit, to provide
the information. SQL statements fall into two categories: data
manipulation language (DML) and data definition language (DDL). DDL
statements can be used to define tables, indexes, and database relations.
DML statements are used to select, sort, summarize, and make
computations on data. We will discuss primarily DML statements.

SQL has been adopted as an ANSI (American National Standards
Institute) standard. This means there is an established set of SQL
statements that every database management system recognizes. Yet, even
with this standard, each manufacturer has added its own ‘dialect’ to the
standard. In these notes, we will use Microsoft SQL. When a statement or
function does not agree with the ANSI standard, this will be pointed out to
the reader.

Basics of SQL
SQL can be used with any database management system, not just Visual
C#. Hence, the syntax learned here will help any database programmer.
SQL is a set of about 30 statements for database management tasks.

To query a database, we form a SQL statement. A statement is a string of
SQL keywords and other information, such as database table and field
names. This statement tells the database engine what information we want
from the database. You do not have to tell the database engine how to get
the information - it does all the hard work for you!

What can a SQL statement accomplish?

⇒ Sort records
⇒ Choose fields
⇒ Choose records
⇒ Cross reference tables
⇒ Perform calculations
⇒ Provide data for database reports
⇒ Modify data

Even though we don’t even know what a SQL statement looks like yet, we
need to set some rules on how to construct such statements. Then, we will
look at how to use a SQL statement in a Visual C# application.

All SQL keywords in a SQL statement will be typed in upper case letters.
Even though SQL is ‘case-insensitive,’ this is good programming practice
and allows us (and others) to differentiate between keywords and other
information in a SQL statement.

SQL uses the term row to refer to a database record and the term column
to refer to database field. This will not come into play in this class, but you
should be aware of this difference if you read other books about SQL.

String information embedded within a SQL statement can be enclosed in

double-quotes (“) or single-quotes (‘). With Visual C#, you should only
use single-quotes to enclose embedded strings. The reason for this is that
the SQL statement is itself a string - so, in Visual C# code, SQL statements
must be enclosed in double-quotes. We enclose embedded strings with
single-quotes to avoid confusion.

SQL supports the use of wildcards in forming data views. Here, we use
the Microsoft SQL wildcard character, an asterisk (*). Use of wildcards
will be illustrated in many examples. ANSI Standard SQL
implementations use the percent sign (%) as a wildcard.

If a table or field name has an embedded space, that name must be
enclosed in brackets ([]). For example, if the table name is My Big Table,
in a SQL statement you would use:

[My Big Table]

This notation is not allowed in some SQL implementations. But in
implementations that don’t recognize brackets, embedded spaces in table
and field names are not allowed, so it should never be a problem. A good
rule of thumb is to avoid embedded spaces in table and field names if you
can.

To refer to a particular field in a particular table in a SQL statement, use a
dot notation:

TableName.FieldName

If either the table or field name has embedded spaces, it must be enclosed
in brackets. Again, avoid embedded spaces if possible.

Now, we’re ready to start forming SQL statements and using them with
Visual C# applications. One warning - SQL is a very powerful ally in
obtaining and modifying data in a database. But, it can also be very
destructive - a single SQL statement can wipe out an entire database! So,
be careful and always provide safeguards against such potential
destruction.

Where Does SQL Fit In Visual C#?
In Chapter 3, we used a single SQL statement to look at some fields from
the Titles table of the books database. The SQL statement was used to
form a command object (based on a connection object), which in turn was
used by a data adapter object to form a data table. The data table is then
available for viewing using data bound controls.

The code involved in processing a SQL statement is (assumes all objects
have been properly declared):

Access Database:

myCommand = new OleDbCommand(mySQL, myConnection);
myAdapter.SelectCommand = myCommand;
myAdapter.Fill(myTable);

SQL Server Database:

myCommand = new SqlCommand(mySQL, myConnection);
myAdapter.SelectCommand = myCommand;
myAdapter.Fill(myTable);

In this code, mySQL is the SQL statement applied against a connection
object myConnection (it is assumed that the connection object has been
opened against a database). The resulting command object
(myCommand) is used by the data adapter (myAdapter) to form the data
table (myTable). This table is then used for data binding.

A result of interest from a SQL query is the number of records returned (if
any). The data table formed has that information in the following property:

myTable.Rows.Count

Example 4-1

SQL Tester
Well, now we know some of the rules and syntax of SQL statements and
how to use them with Visual C#, but we still don’t know what a SQL
statement looks like (well, we saw a couple of examples in Chapter 3). We
correct all that now and start learning more about SQL. To test SQL
statements we form, we build this example which allows us to enter SQL
statements and see the results of the formed database queries. The books
database (BooksDB.accdb) is used in this example.

1. Start a new project. Add a text box control, two label controls, a button,
and a data grid view control to the form. Wait, you say, what is a
DataGridView control? The DataGridView control allows us to view
and edit an entire database table by setting just one property
(DataSource). Resize and position the controls so your form looks
something like this:

2. Set properties for the form and controls:

Form1:

Name frmSQLTester
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text SQL Tester

label1:
AutoSize False
Text Records Returned

label2:
Name lblRecords
AutoSize False
TextAlign MiddleCenter
BackColor White
BorderStyle FixedSingle
Text 0
FontSize 12

button1:
Name btnTest
Text Test SQL Statement
TabStop False

dataGridView1:
Name grdSQLTester
TabStop False

textBox1:
Name txtSQLTester
MultiLine True
ScrollBars Vertical

When done, the form should look like this:

With this example, we will type SQL statements in the text box area, then
click the Test SQL Statement button. The data grid will display the
returned records, while the label control will display the number of records
returned. We need some code to do all of this.

3. Add this line at the top of the code window to allow use of data objects:

using System.Data.OleDb;

4. Form level declaration for connection object:

OleDbConnection booksConnection;

5. Code for the frmSQLTester_Load method that opens the database:

private void frmSQLTester_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
}

6. Code for the frmSQLTester_FormClosing method:

private void frmSQLTester_FormClosing(object sender,
FormClosingEventArgs e)
{

booksConnection.Close();
booksConnection.Dispose();

}

7. Code for the btnTest_Click method:

private void btnTest_Click(object sender, EventArgs e)
{

OleDbCommand resultsCommand = null;
OleDbDataAdapter resultsAdapter = new

OleDbDataAdapter();
DataTable resultsTable = new DataTable();
try
{

// establish command object and data adapter
resultsCommand = new
OleDbCommand(txtSQLTester.Text, booksConnection);
resultsAdapter.SelectCommand = resultsCommand;
resultsAdapter.Fill(resultsTable);
// bind grid view to data table
grdSQLTester.DataSource = resultsTable;
lblRecords.Text = resultsTable.Rows.Count.ToString();

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error in Processing SQL",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
resultsCommand.Dispose();

resultsAdapter.Dispose();
resultsTable.Dispose();

}

Let’s spend some time seeing what’s going on in this code. The first thing
we do is use exception handling (the try block). Without it, if we make a
small error in a SQL statement, the program will stop. With it, we get a
message indicating our mistake and are allowed to continue. Following
error control, the SQL statement (from txtSQLTester) is processed by the
data adapter (resultsAdapter) and the data table (resultsTable)
established. The number of records is then displayed.

Be careful in typing SQL statements. Although we have exception
handling in SQL Tester, if you make a mistake, the returned error
messages are (many times) not of much help. If you get an error, the best
thing to do is retype the SQL command, paying attention to spacing,
spelling, and proper punctuation.

8. Save the application (saved in the Example 4-1 folder in
VCSDB\Code\Class 4 folder) and run it. Type the only SQL statement
you know at this time in the text box (SELECT * FROM Titles). Click
Test SQL Statement and you should see (it may take several seconds
for the records to appear):

Note the data grid view control displays the entire table. You can scroll

through the table or edit any values you choose. Any changes are
automatically reflected in the underlying database. Column widths can be
changed at runtime. Multiple row and column selections are possible. It’s a
very powerful tool. Please note Records Returned values for your results
may be different, depending on the current data in the database.

Change the word SELECT to SLECT to make sure the error trapping
works. You should see:

Now, let’s use this SQL Tester to examine many kinds of SQL statements.
When typing the statements, use upper case letters for the SQL keywords.
Statements do not necessarily have to be on a single line - multiple line
SQL statements are fine and usually make them easier to read and
understand.

Example 4-1

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the books database is SQLBooksDB.mdf.
Copy SQLBooksDB.mdf to your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. In declarations, use this connection object:

SqlConnection booksConnection;

4. In frmSQLTester_Load method, use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

5. In btnTest_Click method:

Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

SELECT/FROM SQL Statement
The most commonly used SQL statement is the one we’ve been using as
an example: the SELECT/FROM statement. This statement allows you to
pick fields from one or more tables.

The syntax for a SELECT/FROM SQL statement is:

SELECT [Fields] FROM [Tables]

where [Fields] is a list of the fields desired and [Tables] is a list of the
tables where the fields are to be found. The wildcard character (*) can be
used for the fields list to select all fields from the listed table(s). For
example, the statement we have been using:

SELECT * FROM Titles

selects and returns all fields from the books database Titles table. Look at
all fields in the other tables (Authors, Publishers, Title_Author) using
similar statements. Looking at each table will reacquaint you with the
structure of the books database tables and fields. We will use a lot in the
rest of this chapter.

If we only want selected fields from a table, we use a field list, which is a
comma-delimited list of the fields desired, or:

SELECT Field1, Field2, Field3 FROM Table

will return three named fields from Table. Make sure you do not put a
comma after the last field name. To obtain just the Title and
Year_Published fields from the books database Titles table, use:

SELECT Title,Year_Published FROM Titles

Note the field names are not written using the prescribed dot notation of
Table.Field. The table name omission is acceptable here because there is
no confusion as to where the fields are coming from. When using multiple

tables, we must use the dot notation.

Try this with the SQL tester and you will see just two fields are returned.

The DISTINCT keyword can be used with SELECT to restrict the
returned records to one per unique entry for the field. That is, there are no
duplicate entries. As an example, first try this with the SQL tester:

SELECT PubID FROM Titles

Now, try:

SELECT DISTINCT PubID FROM Titles

You should see far fewer records are returned - only distinct publishers are
returned.

ORDER BY Clause
When you use a SELECT/FROM statement, the records are returned in the
order they are found in the selected table(s). To sort the returned records in
some other order, you use the ORDER BY clause. The syntax is:

SELECT [Fields] FROM [Tables] ORDER BY FieldSort

This statement selects the listed fields from the listed tables and sorts them
by the field named FieldSort. By default, the ordering is in ascending
order. If you want the sort to be in descending order, the FieldSort name is
followed by the keyword DESC.

Try this statement with the SQL Tester:

SELECT * FROM Titles ORDER BY PubID

All records in the Titles table will be returned in order of Publisher ID.

Try this and the order should be reversed:

SELECT * FROM Titles ORDER BY PubID DESC

You can use more than one field in the ORDER BY clause. SQL will
create a data table based on all requested orderings. Try this with SQL
tester:

SELECT * FROM Titles ORDER BY PubID,Title

The returned records will be in order of the publishers, with each
publisher’s titles in alphabetic order.

If you want to restrict the number of records returned by a SQL statement
that orders the returned records, you can use the TOP keyword with
SELECT. TOP n returns the first n records. TOP n PERCENT returns
the first n percent of the returned records. If two or more records have the
same order value, they are all returned. Use the SQL Tester and try:

SELECT TOP 20 * FROM Titles ORDER BY PubID,Title

Twenty books should be returned. Now, try:

SELECT TOP 20 PERCENT * FROM Titles ORDER BY
PubID,Title

Far more books will be returned.

WHERE Clause
One of the most useful aspects of the SELECT/FROM SQL statement is
its ability to limit the returned data table via the WHERE clause. This
clause specifies some criteria that must be met in forming the data table.
The syntax is:

SELECT [Fields] FROM [Tables] WHERE Criteria

The WHERE clause limits the number of returned records by allowing you
to do logical checks on the value of any field(s). Operators used to
perform these checks include:

 < Less than
 > Greater than
 = Equal
 <= Less than or equal to
 >= Greater than or equal to
 <> Not equal

Other operators are:

Between Within a specified range
In Specify a list of values
Like Wild card matching

The WHERE clause can limit information displayed from one table or
combine information from one or more tables. First, let’s do some single
table examples using SQL Tester.

Single Table WHERE Clause
Say we want to see all fields in the books database Titles table for books
published after 1995. And, we want the returned records ordered by Title.
The SQL statement to do this is (we’ll type each clause on a separate line
to clearly indicate what is going on - multiple line SQL statements are
acceptable and, many times, desirable):

SELECT *
FROM Titles
WHERE Year_Published > 1995
ORDER BY Title

This is where the real power of SQL comes in. With this simple statement,
the database engine quickly finds the desired records and sorts them - all
without any coding on our part!

What if we want to know information about all the book publishers in the
state of Washington. Try this SQL statement with the BooksDB.accdb
Publishers table:

SELECT * FROM Publishers WHERE State = 'WA'

Note we enclosed the state name abbreviation (a string) in single quotes, as
discussed earlier in this chapter. Try this SQL statement with the SQL
tester and you should find one lonely publisher (BetaV) in the state of
Washington!:

Wonder where Microsoft is?

The BETWEEN keyword allows us to search for a range of values. Want
all books published between 1995 and 1998? Use this SQL statement:

SELECT * FROM Titles WHERE Year_Published
BETWEEN 1995 AND 1998

The IN keyword lets us specify a comma-delimited list of desired values in
the returned data table. Say, we want to know the publishers in New York,
Massachusetts, and California. This SQL statement will do the trick:

SELECT * FROM Publishers WHERE State IN ('NY', 'MA', 'CA')

The LIKE keyword allows us to use wildcards in the WHERE clause.
This lets us find similar fields. Recall, the Microsoft SQL wildcard
character is the asterisk (*). For this example to work, you need to use %
as a wildcard in the LIKE clause. The % is a SQL standard for wildcards.
To find all authors with a ‘g’ anywhere in the their name, try:

SELECT * FROM Authors WHERE Author LIKE '%g%'

Multiple criteria are possible by using the logical operators AND and OR.
For example, to find all books in the Titles table published after 1993 with
a title that starts with the letters Data, we would use the SQL statement:

SELECT * FROM Titles
WHERE Year_Published > 1993 AND Title LIKE 'Data%'

Multiple Table WHERE Clause
So far, almost everything we’ve done in this course has involved looking
at a single native (built-in) table in a database. This has been valuable
experience in helping us understand database design, learning how to use
the Visual C# database tools, and learning some simple SQL statements.
Now, we begin looking at one of the biggest uses of database management
systems - combining information from multiple tables within a database.
SQL makes such combinations a simple task.

We still use the same SELECT/FROM syntax, along with the WHERE and
ORDER BY clauses to form our new virtual tables:

SELECT [Fields]
FROM [Tables]
WHERE Criteria
ORDER BY [Fields]

The only difference here is there’s more information in each SQL
statement, resulting is some very long statements. The [Fields] list will
have many fields, the [Tables] list will have multiple tables, and the
Criteria will have several parts. The basic idea is to have the SQL
statement specify what fields you want displayed (SELECT), what tables
those fields are found in (FROM), how you want the tables to be
combined (WHERE), and how you want them sorted (ORDER BY).
Let’s try an example.

Notice the Titles table does not list a book’s publisher, but just publisher
identification (PubID). What if we want to display a book’s title (Title
field in Titles table) and publisher (Company_Name in Publishers table)
in the same data table? Let’s build the SQL statement. First, the SELECT
clause specifies the fields we want in our ‘virtual’ table:

SELECT Titles.Title,Publishers.Company_Name

Note the use of dot notation to specify the desired fields. With multiple
tables, this avoids any problems with naming ambiguities.

The FROM clause names the tables holding these fields:

FROM Titles,Publishers

The WHERE clause declares what criteria must be met in combining the
two tables. The usual selection is to match a primary key in one table
with the corresponding foreign key in another table. Here, we want the
publisher identification numbers from each table to match:

WHERE Titles.PubID = Publishers.PubID

Any records from the tables that do not match the WHERE criteria are not
included in the returned data table.

Lastly, we declare how we want the resulting data table to be sorted:

ORDER BY Titles.Title

The complete SQL statement is thus:

SELECT Titles.Title,Publishers.Company_Name
FROM Titles,Publishers
WHERE Titles.PubID = Publishers.PubID
ORDER BY Titles.Title

Try this with the SQL tester.

Are you amazed? You have just seen one of the real powers of using SQL
with the ADO .NET database engine (or any database system, for that
matter). We simply told the engine what we wanted (via the SQL
statement) and it did all of the work for us - no coding needed! Let’s do
some more examples.

In the previous example, say you just want books published by Que
Corporation. Modify the SQL statement to read (we added an AND
clause):

SELECT Titles.Title,Publishers.Company_Name
FROM Titles,Publishers
WHERE Titles.PubID = Publishers.PubID
AND Publishers.Company_Name = 'QUE CORP'
ORDER BY Titles.Title

What if we want to list a book’s title, publisher, and author, ordered by the
author names? This requires using all four tables in the books database.
Let’s build the SQL statement. We want three fields:

SELECT Authors.Author,Titles.Title,Publishers.Company_Name

As mentioned, to retrieve this information requires all four tables:

FROM Authors,Titles,Publishers,Title_Author

We still need the publisher identification numbers to match, but now also
need to make sure book titles (via the ISBN field) and author identification
numbers match. The corresponding WHERE clause is:

WHERE Titles.ISBN = Title_Author.ISBN
AND Authors.Au_ID = Title_Author.Au_ID
AND Titles.PubID = Publishers.PubID

Finally, the results are sorted:

ORDER BY Authors.Author

Putting all this in the SQL tester gives us over 16,000 listings (one entry
for every author and every book he or she wrote or co-wrote):

Such power! Can you imagine trying to write C# code to perform this
record retrieval task?

If the displayed field name does not clearly describe the displayed
information, you can alias the name, or change it to something more
meaningful using the AS clause. As a simple example, try this:

SELECT Au_ID AS This_Author FROM Authors

Notice the displayed column is now This_Author.

The field name is unaffected by aliasing - only the displayed name
changes.

INNER JOIN Clause
When combining tables, the SQL INNER JOIN clause does the same
work as the WHERE clause. The syntax for an INNER JOIN is a little
different than that of the WHERE clause.

SELECT [Fields]
FROM Table1 INNER JOIN Table2 ON Linking Criteria
WHERE Criteria
ORDER BY [Fields]

This rather long statement begins by specifying the fields to SELECT.
The FROM clause specifies the fields will come from the first table
(Table1) being INNER JOINed with a second table (Table2). The ON
clause states the linking criteria (usually a matching of key values) to be
used in the join. At this point, the tables are combined. You can still use a
WHERE clause to extract specific information from this table (you just
can’t use it to combine tables) and an ORDER BY clause, if desired. Let’s
repeat the examples just done with the WHERE clause.

To display a book title and publisher name, the SELECT clause is:

SELECT Titles.Title, Publishers.Company_Name

We want to ‘join’ the Titles table with the Publishers table, making sure
the PubID fields match. The corresponding INNER JOIN statement is:

FROM Titles INNER JOIN Publishers
ON Titles.PubID = Publishers.PubID

Lastly, we order by the Title:

ORDER BY Titles.Title

Try this SQL statement in the SQL tester and you should obtain the same
results seen earlier with the WHERE clause:

To illustrate use of the WHERE clause (to limit displayed records) in
conjunction with the JOIN clause, try this modified SQL statement with
SQL Tester:

SELECT Titles.Title, Publishers.Company_Name
FROM Titles INNER JOIN Publishers
ON Titles.PubID = Publishers.PubID
WHERE Publishers.Company_Name = 'QUE CORP'
ORDER BY Titles.Title

Only QUE CORP publishers will be listed.

Use of the INNER JOIN clause to combine information from more than
two tables is a little more complicated. The tables need be joined in stages,
nesting the INNER JOIN clauses using parentheses for grouping. Assume
we have three tables (Table1, Table2, Table3) we want to combine.
Table1 and Table3 have a common key field for linking (Key13), as do
Table2 and Table3 (Key23). Let’s combine these three tables using
INNER JOIN. In the first stage, we form a temporary table that is a result
of joining Table2 and Table3 using Key23 for linking:

Table2 INNER JOIN Table3 ON Table2.Key23 = Table3.Key23

In the next stage, we join Table1 with this temporary table (enclose it in

parentheses) using Key13 for linking:

Table1 INNER JOIN
(Table2 INNER JOIN Table3 ON Table2.Key23 = Table3.Key23)
ON Table1.Key13 = Table3.Key13

This nested statement is used in the SQL statement to specify the tables for
field selection. Notice we’ve spread this over a few lines to make it clearer
- any SQL processor can handle multiple line statements. The multiple
table INNER JOIN can be generalized to more tables - just pay attention to
what tables link with each other. Always make sure the tables you are
joining, whether a temporary joined table or a database table, have a
common key.

Remember the example we did earlier where we listed Author, Title, and
Publisher in the books database? Let’s build that SQL statement. First,
SELECT the fields:

SELECT Authors.Author,Titles.Title,Publishers.Company_Name

This is the same SELECT we used previously. Now, we need to form the
FROM clause by combining four tables in three stages (one for each
common key linking). In the first stage, combine the Publishers and Titles
tables (PubID is common key):

FROM Publishers INNER JOIN Titles
ON Publishers.PubID=Titles.PubID

Now, join this temporary table (put its statement in parentheses) with the
Title_Author table (ISBN is common key):

FROM (Publishers INNER JOIN Titles
ON Publishers.PubID=Titles.PubID)
INNER JOIN Title_Author
ON Titles.ISBN=Title_Author.ISBN

In the final stage, join the Authors table with this temporary table (enclose
its statement in parentheses) using Au_ID as the key:

FROM Authors INNER JOIN
((Publishers INNER JOIN Titles
ON Publishers.PubID=Titles.PubID)
INNER JOIN Title_Author
ON Titles.ISBN=Title_Author.ISBN)
ON Authors.Au_ID=Title_Author.Au_ID

The FROM clause needed for the combined data view is now complete.
The final line in the SQL statement orders the data:

ORDER BY Authors.Author

Whew! Try this full statement with the SQL tester and you should get the
same results seen earlier using the WHERE clause.

OUTER JOIN Clause
The INNER JOIN only retrieves records that have a match on both sides of
the JOIN. For example, with the books database, look at this INNER JOIN
statement:

Publishers INNER JOIN Titles ON Publishers.PubID =
Titles.PubID

In this statement, if there is a PubID in the Publishers table without a
corresponding PubID in the Titles table, that value will not be in the
returned data table. If you want all records returned, whether there is a
match or not, you need to use what is called an OUTER JOIN. There are
two forms for the OUTER JOIN.

A RIGHT OUTER JOIN includes all records from the second-named
table (the right-most table), even if there are no matching values for
records in the first-named (left-most table). Try this with SQL Tester:

SELECT Titles.Title, Publishers.Company_Name
FROM Titles
RIGHT OUTER JOIN Publishers
ON Titles.PubID = Publishers.PubID
ORDER BY Titles.Title

There are several publishers (about 19 or so) without corresponding titles
in the database.

A LEFT OUTER JOIN includes all records from the first-named table
(the leftmost table), even if there are not matching values for records in the
second-named (right-most table). Try this with SQL Tester:

SELECT Titles.Title, Publishers.Company_Name
FROM Titles
LEFT OUTER JOIN Publishers
ON Titles.PubID = Publishers.PubID
ORDER BY Titles.Title

The returned data table is identical to that obtained with the INNER JOIN.
Obviously, all books in the database have a corresponding publisher -
that’s actually a good thing.

Functions with SQL (Access
Database)
SQL offers some basic functions that let you modify the displayed
information. It does not affect the underlying information in the database.
As an example, say you want all book titles in the books database Titles
table to be listed in upper case letters. Try this SQL statement with SQL
Tester:

SELECT UCase(Titles.Title) FROM Titles ORDER BY Titles.Title

Notice SQL assigns a heading of Expr1000 to this ‘derived’ field. We can
use the alias feature of SQL change this heading to anything we want
(except the name of an existing field). Try this:

SELECT UCase(Titles.Title) AS Title FROM Titles

Or, what if we had some process that could only use the 10 left-most
characters of the book title. This SQL statement will do the trick:

SELECT Left(UCase(Titles.Title), 10) AS Title FROM Titles

You can also do BASIC math in a SQL statement. The BOOKS database
Authors table has Year_Born as a field. This SQL statement will display
each author and their age in 2006 (when this is being written):

SELECT Authors.Author,(2006-Authors.Year_Born) AS Age
FROM Authors

Note that most of the listings do not have an Age value – I had to scroll
down a bit to find one. The reason for this is because only a few of the
author records have birth year entries - the entries are NULL (containing
no information).

NULL is a special value meaning there is nothing there - this is not the
same as an empty string or blank space. In our work, we will try to avoid
placing NULLs in a database, but sometimes this is not possible or they
may exist in other databases. You need to decide how to handle NULLs in
your design. We will see examples where they cause problems. A NULL
field can be tested using the SQL functions IS NULL and IS NOT NULL.
We can add this to the SQL statement above to find just the Authors
records with a birth year:

SELECT Authors.Author,(2006-Authors.Year_Born) AS Age
FROM Authors
WHERE Authors.Year_Born IS NOT NULL

You should now find 20 authors with ages listed.

Functions with SQL (SQL Server
Database)
There are functions available for use as part of a SQL statement with SQL
Server databases (consult SQL Server references for a full list of such
functions). This lets you modify the displayed information. It does not
affect the underlying information in the database. As an example, say you
want all book titles in the SQLBooksDB.mdf database Titles table to be
listed in upper case letters. Try this SQL statement with SQL Tester:

SELECT UPPER(Titles.Title) FROM Titles ORDER BY
Titles.Title

Notice SQL assigns a heading of Column1 to this ‘derived’ field. We can
use the alias feature of SQL change this heading to anything we want
(except the name of an existing field). Try this:

SELECT UPPER(Titles.Title) AS Title FROM Titles

Or, what if we had some process that could only use the 10 left-most
characters of the book title. This SQL statement will do the trick:

SELECT LEFT(UPPER(Titles.Title), 10) AS Title FROM Titles

You can also do BASIC math in a SQL statement. The BOOKS database
Authors table has Year_Born as a field. This SQL statement will display
each author and their age in 2006 (when this is being written):

SELECT Authors.Author,(2006-Authors.Year_Born) AS Age
FROM Authors

Note that most of the listings do not have an Age value – I had to scroll
down a bit to find one. The reason for this is because only a few of the
author records have birth year entries - the entries are NULL (containing
no information).

NULL is a special value meaning there is nothing there - this is not the
same as an empty string or blank space. In our work, we will try to avoid
placing NULLs in a database, but sometimes this is not possible or they
may exist in other databases. You need to decide how to handle NULLs in
your design. We will see examples where they cause problems. A NULL
field can be tested using the SQL functions IS NULL and IS NOT NULL.
We can add this to the SQL statement above to find just the Authors
records with a birth year:

SELECT Authors.Author,(2006-Authors.Year_Born) AS Age
FROM Authors

WHERE Authors.Year_Born IS NOT NULL

You should now find 20 authors with ages listed.

SQL Aggregate Functions
In addition to SQL functions, the ADO .NET database engine supports the
standard SQL aggregate functions. These are functions that let you
compute summary statistics for fields in your database, alias the results,
and display them in a data table. NULL fields are ignored by the aggregate
functions.

The aggregate functions and their results are:

AVG(Field) Average value of the field
COUNT(Field) Number of entries for the field
FIRST(Field) First value of the field
LAST(Field) Last value of the field
MAX(Field) Maximum value of the field
MIN(Field) Minimum value of the field
SUM(Field) Sum of the field values

Try this example with the Authors table:

SELECT
COUNT(Authors.Author) AS HowMany,
AVG(Authors.Year_Born) AS AveYear,
FIRST(Authors.Year_Born) AS FirstYear,
LAST(Authors.Year_Born) AS LastYear,
MAX(Authors.Year_Born) AS MaxYear,
MIN(Authors.Year_Born) AS MinYear,
SUM(Authors.Year_Born) AS SumYear
FROM Authors

Note some of the aggregate fields (FIrstYear, LastYear) have no values
since these are NULL fields.

Aggregate functions can be used to group results. The GROUP BY clause
lets you determine records with duplicate field values. Want to know how
many publishers in your database are in each state? Try this SQL
statement:

SELECT Publishers.State, Count(Publishers.State) as HowMany
FROM Publishers
GROUP BY Publishers.State

You can use the HAVING qualifier to further reduce the grouping
obtained with a GROUP BY clause. Say in the above example, you only
want to display states starting with the letter M (a strange request, we
know). This SQL statement will do the trick:

SELECT Publishers.State, Count(Publishers.State) as HowMany
FROM Publishers
GROUP BY Publishers.State
HAVING Publishers.State LIKE 'M%'

SQL Construction Tools
We’ve completed our review of the SQL language. There are other
commands we haven’t looked at. If you would like to know more, there
are numerous references available for both ANSI standard SQL and the
Microsoft version. You now know how to construct SQL statements to
extract desired information from a multi-table database and you know how
to read other’s SQL statements.

You have seen that constructing SQL statements is, at times, a tedious
process. To aid in the construction of such statements, there are several
tools available for our use. We’ll discuss two: one in Microsoft Access
and one available with the data wizard (discussed in Chapter 3).

SQL Statements with Access
To build a SQL query using Microsoft Access, you obviously must have
Access installed on your computer. As an example, we will build the SQL
query that displays Author, Title, and Publisher for each book in the books
database:

⇒ Start Access and open your copy of the BooksDB.accdb. Click the
Queries tab and select Create Query in Design View, click Open.

⇒ In the Show Table form, add all four tables. When done, click
Close. A split window appears with the four linked tables at the top
(showing the relationships between primary and foreign keys) and a
table in the lower portion.

⇒ In the lower portion of the window, click the first Field column,
click the drop-down arrow and select Authors.Author. Under Sort,
choose Ascending (sorting by Author). In the second column, click
the drop-down arrow and select Titles.Title. In the third column,
click the drop-down arrow and select Publishers.Company_Name.
When done, you should see (I moved the tables around a bit):

⇒ Click the exclamation point (!) on the Access toolbar to build the
data table. Now, click View on the main Access menu and select
SQL View.

⇒ Like magic, the SQL statement that was used to develop the data
table is displayed:

SELECT Authors.Author, Titles.Title,
Publishers.Company_Name
FROM (Publishers INNER JOIN Titles ON Publishers.PubID =
Titles.PubID) INNER JOIN (Authors INNER JOIN
Title_Author ON
Authors.Au_ID = Title_Author.Au_ID) ON Titles.ISBN =
Title_Author.ISBN
ORDER BY Authors.Author;

Notice a couple of things about this query. First, it uses the INNER JOIN
clause to combine tables. Second, notice the semicolon (;) at the end of the
query. This is not needed and will be ignored by the ADO .NET database
engine. You could now cut and paste the above query wherever you need it
in your Visual C# application. You may need to make some adjustments to
the query to make sure it does not result in any syntax errors at run-time.
Notice this generated query is very much like that developed earlier in
these notes. It’s similar because the author used Access to generate that
query - you, too, should use the Access query building capabilities
whenever you can. You are assured of a correct SQL statement, helping to
minimize your programming headaches.

SQL Statements with the Data
Wizard
In Chapter 3, we looked at the Visual C# data wizard as a tool for building
applications. Even though we won’t be using the wizard to build
applications (primarily to simplify distribution of our applications), it can
be used to generate any SQL statements we might need.

The steps here are similar to those just used with Access (not unexpected
since they probably use the same underlying code). And, even though this
example uses BooksDB.accdb, it can also be done with the SQL Server
version (SQLBooksDB.mdf). Start a new project in Visual C#.

⇒ Choose the Project menu item, then Add New Data Source. Click
Next on the screens until you see (we assume the connection still
‘points’ to the books database; if not, do the steps necessary):

We need all tables in our dataset. Check Authors, Publishers,
Title_Author and Titles. Then, click Finish.

A new dataset (booksDataSet) will appear in the Data Sources window:

⇒ We now need to add a table adapter to generate the needed fields
from the tables to form another table. Highlight the booksDataSet
in the Data Sources window and click the Edit DataSet with
Designer button in the toolbar in that window. This window,
displaying the four individual tables, will appear:

Our virtual table will include the Author, Title, and Company_Name

fields. To build this table, we need a new TableAdapter. Right-click the
display window, and choose Add, then TableAdapter.

⇒ A new adapter will added and the TableAdapter Configuration
Wizard will start up. Click Next on the Choose Your Data
Connection window and the subsequent Choose a Command Type
Window (where we tell the adapter we are using SQL). The Enter a
SQL Statement window will appear:

Here’s where we let the wizard build the SQL statement.

⇒ Click Query Builder to see:

Select the Authors, Publishers, Title_Author and Titles tables and click
Add.

⇒ Click Close. You will see:

The Query Builder is showing the relationships among the tables (i.e. how
the ISBN value connects Titles with Title_Author and how Au_ID
connects Title_Author with Authors, how PubID connects Titles with
Publishers). Select Title in the Titles table. Select Company_Name in
the Publishers table. Then, select Author in the Authors table. Once
added, select a sort type of Ascending in the table below. This will sort the
table according to Author name.

⇒ Once your selections are complete the window will appear as:

Click OK to see the following SQL statement is generated:

SELECT Titles.Title, Publishers.Company_Name, Authors.Author
FROM (((Authors INNER JOIN
Title_Author ON Authors.Au_ID = Title_Author.Au_ID) INNER
JOIN
Titles ON Title_Author.ISBN = Titles.ISBN) INNER JOIN
Publishers ON Titles.PubID = Publishers.PubID)
ORDER BY Authors.Author

This is essentially the same SQL statement generated using Access (except
there is no semicolon at the end). More steps were required. If you have
Access, it’s probably the best way to generate SQL statements.

Building SQL Commands in Code
In each example in this chapter, we formed a SQL command and
processed it to obtain a returned data table (our virtual data view). What do
you do if you don’t know the SQL command prior to implementing it as a
Visual C# property? For example, the user of the books database may want
to know all the publishers in Chicago. Or, the user may want to search the
database for all authors whose name starts with a G.

In both of the above examples, we have no idea what the user will select.
We need to provide the user a method to make a selection then, once the
selection is made, build the SQL statement in Visual C#. Fortunately, the
C# language (used in all methods) is rich with string handling functions
and building such statements in code is a relatively straightforward
process.

To build a SQL command in code, form all the known clauses as string
variables. Once the user makes the selections forming the unknown
information, using the string concatenation operator (+) to place these
selections in their proper position in the complete SQL statement. That
statement can then be processed at run-time, using one of the methods
discussed earlier in this chapter. The next example demonstrates this
technique.

Example 4-2

Searching the Books Database
We build an application (using the BooksDB.accdb books database) that
displays a book’s author, title, and publisher. The user may display all
books in the database or, alternately, search the database for books by
particular authors (searching by the first letter of the last name, using
buttons for selection). There is a lot to learn in this example. You’ll see
how to form a SQL command in code, how to get that statement into code,
how to set up convenient search mechanisms, and how to build a nice
interface, all topics covered in detail in Chapter 5.

1. Start a new project. Add a data view grid control and one button.
Position and resize the controls until the form looks something like this:

Make sure to leave space between the data grid and the button. We will
use this space for two rows of button controls needed to search the
database table.

2. Set properties for the form and controls:

Form1:
Name frmBooks
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Books Database

button1:
Name btnAll
Text Show All Records

dataViewGrid1:
Name grdBooks
AutoSizeColumnsMode Fill

At this point, the form should appear similar to this:

3. Add thisline at the top of the code window to allow use of data objects:

using System.Data.OleDb;

4. Form level declarations:

OleDbConnection booksConnection;
String SQLAll;

Button[] btnRolodex = new Button[26];

SQLAll will be the variable that holds the default SQL statement.
btnRolodex is an array of buttons used for searching.

5. Code for the frmBooks_Load method:

private void frmBooks_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDb.accdb");

booksConnection.Open();
// create Rolodex buttons for searching
int w, lStart, l, t;
int buttonHeight = 33;
// found by trial and error
// search buttons
// determine button width - 13 on a row
w = Convert.ToInt32(this.ClientSize.Width / 14);
// center buttons on form
lStart = Convert.ToInt32(0.5 * (this.ClientSize.Width - 13 * w));
l = lStart;
t = grdBooks.Top + grdBooks.Height + 2;
// create and position 26 buttons
for (int i = 0; i < 26; i++)
{

// create new pushbutton
btnRolodex[i] = new Button();
btnRolodex[i].TabStop = false;
// set text property
btnRolodex[i].Text = ((char) (65 + i)).ToString();
// position

btnRolodex[i].Width = w;
btnRolodex[i].Height = buttonHeight;
btnRolodex[i].Left = l;
btnRolodex[i].Top = t;
// give cool colors
btnRolodex[i].BackColor = Color.Blue;
btnRolodex[i].ForeColor = Color.White;
// add button to form
this.Controls.Add(btnRolodex[i]);
// add event handler
btnRolodex[i].Click += new

System.EventHandler(this.btnSQL_Click);
// next left
l += w;
if (i == 12)
{

// move to next row
l = lStart;
t += buttonHeight;

}
}
// Build basic SQL statement
SQLAll = "SELECT
Authors.Author,Titles.Title,Publishers.Company_Name ";
SQLAll += "FROM Authors, Titles, Publishers, Title_Author ";
SQLAll += "WHERE Titles.ISBN = Title_Author.ISBN ";
SQLAll += "AND Authors.Au_ID = Title_Author.Au_ID ";
SQLAll += "AND Titles.PubID = Publishers.PubID ";
// show form and click on all records initially
this.Show();
btnAll.PerformClick();

}

This routine creates the connection object and establishes the search
buttons A through Z using the btnRolodex array. It determines button
width and places them accordingly. Study the code that does this - it’s very
useful. This routine also builds the default SQL statement that gets the
Author, Title, and Publisher from the database. Note the statement is built
in several stages, each stage appending another clause to the statement.
Note, particularly, each subsequent clause has a space at the end to make
sure there are no ‘run-ons’ of keywords. Lastly, all records are displayed
by ‘clicking’ on the btnAll control.

6. Code for the frmBooks_FormClosing method:

private void frmBooks_FormClosing(object sender,
FormClosingEventArgs e)
{

booksConnection.Close();
booksConnection.Dispose();

}

7. Code for the btnSQL_Click method (handles the Click event for all
control buttons):

private void btnSQL_Click(object sender, EventArgs e)
{

OleDbCommand resultsCommand = null;
OleDbDataAdapter resultsAdapter = new

OleDbDataAdapter();
DataTable resultsTable = new DataTable();
String SQLStatement;
// determine which button was clicked and form SQL statement
Button buttonClicked = (Button) sender;
switch (buttonClicked.Text)
{

case "Show All Records":
SQLStatement = SQLAll;
break;

case "Z":
// Z Clicked
// Append to SQLAll to limit records to Z Authors
SQLStatement = SQLAll + "AND Authors.Author > 'Z'
";
break;

default:
// Letter key other than Z clicked
// Append to SQLAll to limit records to letter clicked
int index = (int) (Convert.ToChar(buttonClicked.Text)) -
65;
SQLStatement = SQLAll + "AND Authors.Author > '" +
btnRolodex[index].Text + " ' ";
SQLStatement += "AND Authors.Author < '" +
btnRolodex[index + 1].Text + " ' ";
break;

}
SQLStatement += "ORDER BY Authors.Author";
// apply SQL statement
try
{

// establish command object and data adapter
resultsCommand = new OleDbCommand(SQLStatement,
booksConnection);
resultsAdapter.SelectCommand = resultsCommand;
resultsAdapter.Fill(resultsTable);
// bind grid view to data table
grdBooks.DataSource = resultsTable;

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error in Processing SQL",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

resultsCommand.Dispose();
resultsAdapter.Dispose();
resultsTable.Dispose();

}

This routine determines which button was clicked and forms the SQL
statement. If the ‘Show All Records’ button is clicked, all records are
displayed. If a letter button is clicked, it determines which letter was
clicked by the user and appends an additional test (using AND) to the
WHERE clause in the default SQL statement. This test limits the returned
records to author’s names between the clicked letter and the next letter in
the alphabet. Note that clicking Z is a special case. Once the SQL
statement is formed, it is processed by the data adapter to form the data
table.

8. Save the application (saved in the Example 4-2 folder in
VCSDB\Code\Class 4 folder). Run it. You should see:

Notice how the search buttons are built and nicely displayed. Notice, too,
that all records are displayed. Click one of the search buttons. Only records
with author names matching the clicked letter will be displayed. Here’s
what I see when I click the ‘G’ button:

Example 4-2

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the books database is SQLBooksDB.mdf.
Copy SQLBooksDB.mdf to your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. In declarations, use this connection object:

SqlConnection booksConnection;

4. In frmBooks_Load method, use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

5. In btnSQL_Click method:

Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

Summary
We’re now done with our long journey into the world of SQL. This has
been a relatively complete overview and you will learn more as you
become a more proficient database programmer. SQL is at the heart of
obtaining a virtual view of desired database information.

Forming this virtual view using SQL was seen to be a straightforward, and
sometimes complicated, process. Tools such as the Access SQL Builder
and the SQL Build function of the Visual C# data wizard can help us build
error free SQL queries. Even with such tools, it is important to know SQL
so you can understand and modify SQL statements built and implemented
by others.

SQL also has the ability to modify information in a database. You can also
use SQL to add records, delete records, and even create new database
tables. But, such capabilities are beyond this course. Besides, the same
abilities are available to us using Visual C#. That is the approach we will
use for actual database management tasks. Such tasks are covered in
Chapter 6, following a discussion of building a proper Visual C# interface
in Chapter 5.

Example 4-3

Northwind Traders Database
This example gives you more practice with SQL by looking at another
database - the Northwind Traders database (NWindDB.accdb) studied in
other chapters. This is an “open” exercise where you can do what you want
until you feel you are more proficient in understanding SQL.

1. First, modify the SQL Tester in Example 4-1 so it uses
NWindDB.accdb (simply change the ConnectionObject):

NWindConnection = new
OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\NWindDB.accdb");

The connection object has been renamed for this example.

2. Save (saved in the Example 4-3 folder in VCSDB\Code\Class 4 folder)
and run your application. Now, try things. Use SQL to examine each of
the eight tables (Categories, Customers, Employees, Order Details,
Orders, Products, Shippers, Suppliers). Examine each field. Try
selecting specific fields from tables. Try ordering the results. Try
combining tables to show various information. Try the SQL aggregate
functions to do some math. Use Access’s or the data wizard’s ability to
generate SQL statements. Cut and paste those statements into SQL
Tester to try them.

Here’s the result from finding all fields in the Customers table:

and here’s the same from the Products table:

Example 4-3

Using SQL Server Databases
Modify the SQL Server version of Example 4-1 as follows:

1. The SQL Server version of the database is SQLNWindDB.mdf. Make
sure SQLNWindDB.mdf is in your working directory

2. In frmSQLTester_Load method, use this connection object:

NWindConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLNWindDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

5
Visual C# Interface Design

Review and Preview
At this point in the course, we can use Visual C# to connect to a database
and SQL statements allow us to obtain any view of the database
information we desire. But, that’s all we can do - view the data.

We now want to know how to allow a user to interact with the data -
obtain alternate views, modify it, add to it, delete it. To do this, we need a
well-designed user interface.

In this chapter, we look at some design considerations for the Visual C#
front-end. We examine the toolbox controls and Visual C# coding
techniques needed to build a useful interface and application. Several
examples illustrate use of the tools and techniques.

Interface Design Philosophy
The design philosophy for a proper application interface is very basic –
keep it as simple as possible and as intuitive as possible. By doing this,
you will save yourself (the programmer) and your users a lot of problems.
This may be an obvious statement, but you would be surprised at how
many programmers do not follow it.

A first consideration should be to determine what processes and functions
you want your application to perform. What are the inputs and outputs?
Develop a framework or flow chart of all your application's processes.
Possible functions of a database interface include: data entry, searching,
deleting information, adding information, editing information, sorting data,
and printing capabilities.

Decide if multiple forms are required. Decide what controls from the
Visual C# toolbox you need. Do the built-in Visual C# tools and functions
meet your needs? Do you need to develop some tools or functions of your
own? Do you need to acquire some third-party controls?

Minimize the possibility of user errors. This is a very important step. The
fewer errors your user can make, the less error checking you have to do. If
a particular input calls for numeric data, make sure your user can’t type in
his name. Choose ‘point and click’ type tools whenever they can be used
to replace tools requiring the user to type in something. For example, let
the user point at a month of the year, rather than have the user type in the
month. If you can avoid letting your user type anything, do it! Every
“typed input” requires some kind of validation that means extra work on
your part.

At all steps in the application, make it intuitive to the user what he or she
is to do. Don’t make or let the user guess. You, as the programmer, control
the flow of information from the user to the program and vice versa.
Maintain that control at all times. Try to anticipate all possible ways a user
can mess up in using your application. It's fairly easy to write an
application that works properly when the user does everything correctly.
It's difficult to write an application that can handle all the possible wrong

things a user can do and still not bomb out. And, although it is difficult, it
is straightforward and just a matter of following your common sense.

Make your interface appealing to the user. Use tolerable colors and don’t
get carried away with too many font types. Make sure there are no
misspellings (a personal pet peeve). Make the interface consistent with
other Windows applications. Familiarity is good in program design. It is
quite proper to ‘borrow’ ideas from other applications.

Although not part of the interface the user sees, you should make your
code readable and traceable - future code modifiers will thank you. Choose
meaningful variable and control names. Use comments to explain what
you are doing. Consider developing reusable code - modules with utility
outside your current development. This will save you time in future
developments.

Debug your application completely before distributing it. There's nothing
worse than having a user call you to point out flaws in your application. A
good way to find all the bugs is to let several people try the code - a mini
beta-testing program. Let’s illustrate some of these philosophies with an
example.

Example 5-1

Mailing List Revisited
Open and run the mailing list example built in Chapter 1 (Example 1-1,
also saved in the Example 5-1 folder in the VCSDB\Code\Class 5 folder).
It illustrates many of the interface design philosophies just discussed.
Notice the program flow - how it directs the user about what to do and
minimizes the possibility of errors. In particular, note:

⇒ You cannot type Address Information unless the timer has started
(controlled via the Enabled property of grpMail).

⇒ When the Address Information frame is active, the cursor appears in
the first text box, so the user starts typing the Name field first
(controlled with the txtName text box Focus method).

⇒ After the user types information in each text box, hitting <Enter> or
<Tab> automatically moves them to the next text box (controlled
with the Focus method).

⇒ After the user types in the last text box (Zip), the focus moves to
the Accept button, so a simple <Enter> accepts the mailing label
(using Focus on the btnAccept button).

Notice how the program flow leads the user through the input process.
Regarding the timer portion of the application, notice the Pause button is
faded (Enabled is False) initially and is only active (Enabled is True)
when the timer is running. The other timer control buttons toggle
accordingly.

There is some validation of inputs in this application also. If there are not
five values input, a message box appears informing the user of his error.
And, only numbers can be typed when txtZip is active (done in the
KeyPress event). This is the box for the Zip that can only be a number. It
would probably be more proper to also make sure the entered zip matches
either the five or nine digit zip code format. Another validation possible
would be to provide a list box control with the 50 states (apologies to our
foreign readers for using a provincial example) to choose from instead of

asking the user to type in a state name.

Regarding the code in the example, notice the use of comments to explain
what is happening in each method. This helps others read and understand
your code. It also helps you know what you were doing when you look
back on the code a year later. Also notice that selection of proper variable
and control names aids in understanding what is going on in the code
portion of the application. Now, let’s look at interface design in more
detail.

Visual C# Standard Controls
The first step in building a Visual C# interface is to ‘draw’ the application
on a form. We place the required controls on the form, set properties, and
write C# code for the needed event and general methods. As the interface
designer, you need to decide which controls best meet your needs
regarding efficiency, applicability, and minimization of error possibilities.

In this section, we briefly look at the standard Visual C# controls. We
examine how they might be used in a database ‘front-end’ and present
some of the important properties, events, and methods associated with
these controls. This information is provided as a quick review of what is
available in the Visual C# toolbox - a “one-stop” reference to standard
controls and how they are used with databases. A later look at more
advanced controls will complete the reference.

Form Control
The Form is where the user interface is drawn. It is central to the
development of Visual C# applications, whether for databases or other
uses.

Form Properties:

Name Gets or sets the name of the form (three letter
prefix for form name is frm).

AcceptButton Gets or sets the button on the form that is
clicked when the user presses the <Enter>
key.

BackColor Get or sets the form background color.
CancelButton Gets or sets the button control that is clicked

when the user presses the <Esc> key.
ControlBox Gets or sets a value indicating whether a

control box is displayed in the caption bar of
the form.

Enabled If False, all controls on form are disabled.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
FormBorderStyle Sets the form border to be fixed or sizeable.
Height Height of form in pixels.
Help Gets or sets a value indicating whether a Help

button should be displayed in the caption box
of the form.

Icon Gets or sets the icon for the form.
Left Distance from left of screen to left edge of

form, in pixels.
MaximizeButton Gets or sets a value indicating whether the

maximize button is displayed in the caption
bar of the form.

MinimizeButton Gets or sets a value indicating whether the
minimize button is displayed in the caption
bar of the form.

StartPosition Gets or sets the starting position of the form
when the application is running.

Text Gets or sets the form window title.
Top Distance from top of screen to top edge of

form, in pixels.
Width Width of form in pixels.

Form Methods:

Close Closes the form.
Focus Sets focus to the form.
Hide Hides the form.
Refresh Forces the form to immediately repaint itself.
Show Makes the form display by setting the Visible

property to True.

The normal syntax for invoking a method is to type the control name, a
dot, then the method name. For form methods, the name to use is this. This
is a Visual C# keyword used to refer to a form. Hence, to close a form,
use:

this.Close();

Form Events:

Activated Occurs when the form is activated in code or
by the user.

Click Occurs when the form is clicked by the user.
FormClosing Occurs when the form is closing.
DoubleClick Occurs when the form is double clicked.
Load Occurs before a form is displayed for the first

time.
Paint Occurs when the form is redrawn.

Typical use of Form object (for each control in this, and following
chapters, we will provide information for how that control is typically
used):

➢ Set the Name and Text properties
➢ Set the StartPosition property (in this course, this property will

almost always be set to CenterScreen)
➢ Set the FormBorderStyle to some value. In this course, we will

mostly use FixedSingle forms. You can have resizable forms in
Visual C# (and there are useful properties that help with this task),
but we will not use resizable forms in this course.

➢ Write any needed initialization code in the form’s Load event. To
access this event in the Code window, double-click the form.

Button Control

The button is probably the most widely used control. It is used to begin,
interrupt, or end a particular process. With databases, it is used to
navigate among records, add records, and delete records.

Button Properties:

Name Gets or sets the name of the button (three
letter prefix for button name is btn).

BackColor Get or sets the button background color.
Enabled If False, button is visible, but cannot accept

clicks.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
Image Gets or sets the image that is displayed on a

button control.
Text Gets or sets string displayed on button.
TextAlign Gets or sets the alignment of the text on the

button control.

Button Methods:

Focus Sets focus to the button.
PerformClick Generates a Click event for a button.

Button Events:

Click Event triggered when button is selected either
by clicking on it or by pressing the access
key.

Typical use of Button control:

➢ Set the Name and Text property.
➢ Write code in the button’s Click event.
➢ You may also want to change the Font, Backcolor and Forecolor

properties.

Label Control

A label is a control you use to display text. The text in a label can be
changed at run-time in response to events. It is widely used in database
applications for information display.

Label Properties:

Name Gets or sets the name of the label (three letter
prefix for label name is lbl).

AutoSize Gets or sets a value indicating whether the
label is automatically resized to display its
entire contents.

BackColor Get or sets the label background color.
BorderStyle Gets or sets the border style for the label.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
Text Gets or sets string displayed on label.
TextAlign Gets or sets the alignment of text in the label.

Note, by default, the label control has no resizing handles. To resize the
label, set AutoSize to False.

Label Methods:

Refresh Forces an update of the label control contents.

Label Events:

Click Event triggered when user clicks on a label.
DblClick Event triggered when user double-clicks on a

label.

Typical use of Label control for static, unchanging display:

➢ Set the Name (though not really necessary for static display) and
Text property.

➢ You may also want to change the Font, Backcolor and Forecolor
properties.

Typical use of Label control for changing display:

➢ Set the Name property. Initialize Text to desired string.
➢ Set AutoSize to False, resize control and select desired value for

TextAlign.
➢ Assign Text property (String type) in code where needed.
➢ You may also want to change the Font, Backcolor and Forecolor

properties.

TextBox Control

A text box is used to display information entered at design time, by a user
at run-time, or assigned within code. The displayed text may be edited.
This is the tool used in database applications for editing fields.

TextBox Properties:

Name Gets or sets the name of the text box (three
letter prefix for text box name is txt).

BackColor Get or sets the text box background color.
BorderStyle Gets or sets the border style for the text box.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
HideSelection Gets or sets a value indicating whether the

selected text in the text box control remains
highlighted when the control loses focus.

Lines Gets or sets the lines of text in a text box
control.

MaxLength Gets or sets the maximum number of
characters the user can type into the text box
control.

MultiLine Gets or sets a value indicating whether this is
a multiline text box control.

PasswordChar Gets or sets the character used to mask
characters of a password in a single-line
TextBox control.

ReadOnly Gets or sets a value indicating whether text in
the text box is read-only.

ScrollBars Gets or sets which scroll bars should appear
in a multiline TextBox control.

SelectedText Gets or sets a value indicating the currently

selected text in the control.
SelectionLength Gets or sets the number of characters selected

in the text box.
SelectionStart Gets or sets the starting point of text selected

in the text box.
Text Gets or sets the current text in the text box.
TextAlign Gets or sets the alignment of text in the text

box.
TextLength Gets length of text in text box.

TextBox Methods:

AppendText Appends text to the current text of text box.
Clear Clears all text in text box.
Focus Places the cursor in a specified text box.
SelectAll Selects all text in text box.
Undo Undoes the last edit operation in the text box.

TextBox Events:

KeyDown Occurs when a key is pressed down while the
control has focus.

KeyPress Occurs when a key is pressed while the
control has focus – used for key trapping.

Leave Triggered when the user leaves the text box.
This is a good place to examine the contents
of a text box after editing.

TextChanged Occurs when the Text property value has
changed.

Typical use of TextBox control as display control:

➢ Set the Name property. Initialize Text property to desired string.
➢ Set ReadOnly property to True.
➢ If displaying more than one line, set MultiLine property to True.
➢ Assign Text property in code where needed.

➢ You may also want to change the Font, Backcolor and Forecolor
properties.

Typical use of TextBox control as input device:

➢ Set the Name property. Initialize Text property to desired string.
➢ If it is possible to input multiple lines, set MultiLine property to

True.
➢ In code, give Focus to control when needed. Provide key trapping

code in KeyPress event. Read Text property when Leave event
occurs.

➢ You may also want to change the Font, Backcolor and Forecolor
properties.

CheckBox Control

Check boxes provide a way to make choices from a list of potential
candidates. Some, all, or none of the choices in a group may be selected.
With databases, check boxes are used for many kinds of choices.

CheckBox Properties:

Name Gets or sets the name of the check box (three
letter prefix for check box name is chk).

AutoSize Gets or sets a value indicating whether the
check box is automatically resized to display
its entire contents.

BackColor Get or sets the check box background color.
Checked Gets or sets a value indicating whether the

check box is in the checked state.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
Text Gets or sets string displayed next to check

box.
TextAlign Gets or sets the alignment of text of the check

box.

CheckBox Methods:

Focus Moves focus to this check box.

CheckBox Events:

CheckedChanged Occurs when the value of the Checked
property changes, whether in code or when a
check box is clicked.

Click Triggered when a check box is clicked.
Checked property is automatically changed
by Visual C#.

Typical use of CheckBox control:

➢ Set the Name and Text property. Initialize the Checked property.
➢ Monitor Click or CheckChanged event to determine when button

is clicked. At any time, read Checked property to determine check
box state.

➢ You may also want to change the Font, Backcolor and Forecolor
properties.

RadioButton Control

Radio buttons provide the capability to make a mutually exclusive choice
among a group of potential candidate choices. Hence, radio buttons work
as a group, only one of which can have a True (or selected) value. Radio
buttons on a form work as an independent group as do groups of radio
buttons within panels and group boxes. Radio buttons are not data bound
controls, yet they can still be used for a variety of options in database
interfaces.

RadioButton Properties:

Name Gets or sets the name of the radio button
(three letter prefix for radio button name is
rdo).

AutoSize Gets or sets a value indicating whether the
radio button is automatically resized to
display its entire contents.

BackColor Get or sets the radio button background color.
Checked Gets or sets a value indicating whether the

radio button is checked.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
TextAlign Gets or sets the alignment of text of the radio

button.

RadioButton Methods:

Focus Moves focus to this radio button.
PerformClick Generates a Click event for the button,

simulating a click by a user.

RadioButton Events:

CheckedChanged Occurs when the value of the Checked
property changes, whether in code or when a
radio button is clicked.

Click Triggered when a button is clicked. Checked
property is automatically changed by Visual
C#.

Typical use of RadioButton control:

➢ Establish a group of radio buttons.
➢ For each button in the group, set the Name (give each button a

similar name to identify them with the group) and Text property.
You might also change the Font, BackColor and Forecolor
properties.

➢ Initialize the Checked property of one button to True.
➢ Monitor the Click or CheckChanged event of each radio button in

the group to determine when a button is clicked. The ‘last clicked’
button in the group will always have a Checked property of True.

GroupBox Control

Group boxes provide a way of grouping related controls on a form. Radio
buttons within a group box act independently of other radio buttons in an
application.

GroupBox Properties:

Name Gets or sets the name of the group box (three
letter prefix for group box name is grp).

BackColor Get or sets the group box background color.
Enabled Gets or sets a value indicating whether the

group box is enabled. If False, all controls in
the group box are disabled.

Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text.
Text Gets or sets string displayed in title region of

group box.
Visible If False, hides the group box (and all its

controls).

The GroupBox control has some methods and events, but these are rarely
used. We are more concerned with the methods and events associated with
the controls in the group box.

Typical use of GroupBox control:

➢ Set Name and Text property (perhaps changing Font, BackColor
and ForeColor properties).

➢ Place desired controls in group box. Monitor events of controls in
group box using usual techniques.

Panel Control

The Panel control is another Visual C# grouping control. It is nearly
identical to the GroupBox control in behavior. The panel control lacks a
Text property (titling information), but has optional scrolling capabilities.
Radio buttons in the panel control act as an independent group. Panel
controls can also be used to display graphics (lines, curves, shapes,
animations).

Panel Properties:

Name Gets or sets the name of the panel (three letter
prefix for panel name is pnl).

AutoScroll Gets or sets a value indicating whether the
panel will allow the user to scroll to any
controls placed outside of its visible
boundaries.

BackColor Get or sets the panel background color.
BorderStyle Get or set the panel border style.
Enabled Gets or sets a value indicating whether the

panel is enabled. If False, all controls in the
panel are disabled.

Visible If False, hides the panel (and all its controls).

Like the GroupBox control, the Panel control has some methods and
events, but these are rarely used (we will see a few Panel events in later
graphics chapters). We usually only are concerned with the methods and
events associated with the controls in the panel.

Typical use of Panel control:

➢ Set Name property.
➢ Place desired controls in panel control.

➢ Monitor events of controls in panel using usual techniques.

PictureBox Control

The picture box allows you to place graphics information on a form. In a
database, picture boxes are used to store graphic data.

PictureBox Properties:

Name Gets or sets the name of the picture box (three
letter prefix for picture box name is pic).

BackColor Get or sets the picture box background color.
BorderStyle Indicates the border style for the picture box.
Height Height of picture box in pixels.
Image Establishes the graphics file to display in the

picture box (jpeg, gif, bmp files).
Left Distance from left edge of form to left edge of

picture box, in pixels.
SizeMode Indicates how the image is displayed.
Top Distance bottom of form title bar area to top

edge of picture box, in pixels.
Width Width of picture box in pixels.

PictureBox Events:

Click Triggered when a picture box is clicked.

Typical use of PictureBox control for displaying images:

➢ Set the Name and SizeMode property (most often, StretchImage).
➢ Set Image property, either in design mode or at run-time,

remembering icon files are not automatically displayed.

Example 5-2

Authors Table Input Form
In Chapter 6, we will build a complete database management system for
the books database. Each table in the database will require some kind of
input form. In this chapter, we build such a form for the Authors table.
Even though it is a very simple table (only three fields: Au_ID, Author,
Year_Born), it provides an excellent basis to illustrate many of the steps
of proper interface design. The SQL statement needed by the command
object to retrieve the fields (sorted by Author) is:

SELECT * FROM Authors ORDER BY Author

We need an input form that allows a user to edit an existing record, delete
an existing record or add a new record. The form should also allow
navigation from one record to another. The steps to follow:

1. Start a new application. We need three label controls and three text
boxes to display the fields. We need two buttons to move from one
record to the next. We need five buttons to control editing features and
one button to allow us to stop editing. Place these controls on a form.
The layout should resemble:

2. Set these properties for the form and controls:

Form1:
Name frmAuthors
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Authors

label1:
Text Author ID

textBox1:
Name txtAuthorID
BackColor White
ReadOnly True

label2:
Text Author Name

textBox2:
Name txtAuthorName
BackColor White
ReadOnly True

label3:
Text Year Born

textBox3:
Name txtYearBorn
BackColor White
ReadOnly True

button1:
Name btnPrevious
Text <= Previous

button2:
Name btnNext

Text Next =>

button3:
Name btnEdit
Text &Edit

button4:
Name btnSave
Text &Save

button5:
Name btnCancel
Text &Cancel

button6:
Name btnAddNew
Text &Add New

button7:
Name btnDelete
Text &Delete

button8:
Name btnDone
Text Do&ne

Note, we ‘lock’ (ReadOnly = True) all the text boxes. We will unlock
them when we (as the programmer) decide the user can change a value
(remember, we are in control). At this point, the form should appear as:

3. We will add features to this input application as we progress through the
chapter. At this point, we add code to form the data table and allow us
to navigate through the Authors table records. Add this line at the top
of the code window:

using System.Data.OleDb;

4. Form level declarations to create data objects:

OleDbConnection booksConnection;
OleDbCommand authorsCommand;
OleDbDataAdapter authorsAdapter;
DataTable authorsTable;
CurrencyManager authorsManager;

5. Add this code the frmAuthors_Load method:

private void frmAuthors_Load(object sender, EventArgs e)
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");
booksConnection.Open();

// establish command object
authorsCommand = new OleDbCommand("Select * from

Authors
ORDER BY Author", booksConnection);

// establish data adapter/data table
authorsAdapter = new OleDbDataAdapter();
authorsAdapter.SelectCommand = authorsCommand;
authorsTable = new DataTable();
authorsAdapter.Fill(authorsTable);
// bind controls to data table
txtAuthorID.DataBindings.Add("Text", authorsTable,
"Au_ID");
txtAuthorName.DataBindings.Add("Text", authorsTable,
"Author");
txtYearBorn.DataBindings.Add("Text", authorsTable,
"Year_Born");
// establish currency manager
authorsManager = (CurrencyManager)

this.BindingContext[authorsTable];
}

This code creates the needed data objects to open the database and form
the Authors table (includes all fields ordered by Author). It then binds the
controls to the currency manager object. This code is identical to code seen
in the previous two chapters.

6. Add this code to the frmAuthors_Closing event method to close the
database connection:

private void frmAuthors_FormClosing(object sender,
FormClosingEventArgs e)
{

// close the connection
booksConnection.Close();
// dispose of the objects
booksConnection.Dispose();
authorsCommand.Dispose();

authorsAdapter.Dispose();
authorsTable.Dispose();

}

7. Code for the two button Click events to allow navigation:

private void btnPrevious_Click(object sender, EventArgs e)
{

authorsManager.Position--;
}

private void btnNext_Click(object sender, EventArgs e)
{

authorsManager.Position++;
}

8. Save the application (saved in the Example 5-2 folder in
VCSDB\Code\Class 5 folder). Run it. Here is the first record:

Navigate among the records. Note you cannot edit anything. The text
boxes are read-only. As we progress through this chapter (and the next),
we will continue to add features to this example until it is complete.

Example 5-2

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the books database is SQLBooksDB.mdf.
Copy SQLBooksDB.mdf to your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. In declarations, use these objects:

SqlConnection booksConnection;
SqlCommand authorsCommand;
SqlDataAdapter authorsAdapter;

4. In frmAuthors_Load method, use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

5. In frmAuthors_Load:

Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

MessageBox Object
Many times, in a database application, you will want to impart some
information to your user. That information may be a courtesy message
(“New record written”) or a question requiring feedback (“Do you really
want to delete this record?”). Visual C# (and Windows) provides an
excellent medium for providing such information – the MessageBox
object.

You've seen message boxes if you've ever used a Windows application.
Think of all the examples you've seen. For example, message boxes are
used to ask you if you wish to save a file before exiting and to warn you if
a disk drive is not ready. For example, if while writing these notes in
Microsoft Word, I attempt to exit, I see this message box:

In this message box, the different parts that you control have been labeled.
You will see how you can format a message box any way you desire.

To use the MessageBox object, you decide what the Text of the message
should be, what Caption you desire, what Icon and Buttons are
appropriate, and which DefaultButton you want. To display the message
box in code, you use the MessageBox Show method.

The MessageBox is overloaded with several ways to implement the Show
method. Some of the more common ways are:

MessageBox.Show(Text);
MessageBox.Show(Text, Caption);

MessageBox.Show(Text, Caption, Buttons);
MessageBox.Show(Text, Caption, Buttons, Icon);
MessageBox.Show(Text, Caption, Buttons, Icon, DefaultButton);

In these implementations, if DefaultButton is omitted, the first button is
default. If Icon is omitted, no icon is displayed. If Buttons is omitted, an
‘OK’ button is displayed. And, if Caption is omitted, no caption is
displayed.

You decide what you want for the message box Text and Caption
information (string data types). The other arguments are defined by Visual
C# predefined constants. The Buttons constants are defined by the
MessageBoxButtons constants:

Member Description
AbortRetryIgnore Displays Abort, Retry and Ignore buttons
OK Displays an OK button
OKCancel Displays OK and Cancel buttons
RetryCancel Displays Retry and Cancel buttons
YesNo Displays Yes and No buttons
YesNoCancel Displays Yes, No and Cancel buttons

The syntax for specifying a choice of buttons is the usual dot-notation:

MessageBoxButtons.Member

So, to display an OK and Cancel button, the constant is:

MessageBoxButtons.OKCancel

You don’t have to remember this, however. When typing the code, the
Intellisense feature will provide a drop-down list of button choices when
you reach that argument! This will happen for all the arguments in the
MessageBox object.

The displayed Icon is established by the MessageBoxIcon constants:

Member Description

IconAsterisk Displays an information icon
IconInformation Displays an information icon
IconError Displays an error icon (white X in red circle)
IconHand Displays an error icon
IconNone Display no icon
IconStop Displays an error icon
IconExclamation Displays an exclamation point icon
IconWarning Displays an exclamation point icon
IconQuestion Displays a question mark icon

To specify an icon, the syntax is:

MessageBoxIcon.Member

Note there are eight different members of the MessageBoxIcon constants,
but only four icons (information, error, exclamation, question) available.
This is because the current Windows operating system only offers four
icons. Future implementations may offer more.

When a message box is displayed, one of the displayed buttons will have
focus or be the default button. If the user presses <Enter>, this button is
selected. You specify which button is default using the
MessageBoxDefaultButton constants:

Member Description
Button1 First button in message box is default
Button2 Second button in message box is default
Button3 Third button in message box is default

To specify a default button, the syntax is:

MessageBoxDefaultButton.Member

The specified default button is relative to the displayed buttons, left to
right. So, if you have Yes, No and Cancel buttons displayed and the
second button is selected as default, the No button will have focus (be
default). Always try to make the default response the “least damaging,” if

the user just blindly accepts it.

When you invoke the Show method of the MessageBox object, the method
returns a value from the DialogResult constants. The available members
are:

Member Description
Abort The Abort button was selected
Cancel The Cancel button was selected
Ignore The Ignore button was selected
No The No button was selected
OK The OK button was selected
Retry The Retry button was selected
Yes The Yes button was selected

MessageBox Example:

This little code snippet (the first line is very long):

if (MessageBox.Show("This is an example of a message box",
"Message Box Example", MessageBoxButtons.OKCancel,
MessageBoxIcon.Information,
MessageBoxDefaultButton.Button1) == DialogResult.OK)
{

// everything is OK
}
else
{

// cancel was pressed
}

displays this message box:

Of course, you would need to add code for the different tasks depending
on whether OK or Cancel is clicked by the user.

Another MessageBox Example:

Many times, you just want to display a quick message to the user with no
need for feedback (just an OK button). This code does the job:

MessageBox.Show("Quick message for you.", "Hey You!");

The resulting message box:

Notice there is no icon and the OK button (default if no button specified) is
shown. Also, notice in the code, there is no need to read the returned value
– we know what it is! You will find a lot of uses for this simple form of the
message box (with perhaps some kind of icon) as you progress in this
course.

Message boxes should be used whenever your application needs to inform
the user of action or requires user feedback to continue. It is probably
better to have too many message boxes, than too few. You always want to
make sure your application is performing as it should and the more
information you have, the better.

Example 5-3

Authors Table Input Form (Message
Box)

There are two places where we could use message boxes in the Authors
Table example. A simple box after saving an update to let the user know
the save occurred and one related to deleting records.

1. Load Example 5-2 completed earlier. We will modify this example to
include message boxes.

2. Use this code in the btnSave_Click event:

private void btnSave_Click(object sender, EventArgs e)
{

MessageBox.Show("Record saved.", "Save",
MessageBoxButtons.OK, MessageBoxIcon.Information);
}

Obviously, there will be more code in this event as we continue with this
example. This code just implements the message box.

3. Use this code in the btnDelete_Click event:

private void btnDelete_Click(object sender, EventArgs e)
{

DialogResult response;
response = MessageBox.Show("Are you sure you want to

delete this record?", "Delete", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2);

if (response == DialogResult.No)
{

return;

}
}

Note we exit the method if the user selects No. And, notice the No button
is default – this makes the user think a bit before hitting Enter. Like
above, there will be more code in this method as we proceed.

4. Save the application (saved in the Example 5-3 folder in
VCSDB\Code\Class 5 folder) and run it. Click the Save button and you
will see:

Click OK, then try clicking the Delete button to see:

Example 5-3

Using SQL Server Databases
Using the SQL Server version of the project, make the same changes to
btnSave_Click, and btnDelete_Click.

Application State
When presenting a Visual C# database interface to a user, it should be
obvious, to the user, what needs to be done. Options should be intuitive
and the possibility of mistakes minimized, if not completely eliminated. To
maintain this obvious quality, you should always be aware of what state
your application is in.

Application state implies knowing just what is currently being done
within the interface. Are you adding a record, editing a record, deleting a
record, or perhaps leaving the application? Once you know the state the
application is in, you adjust the interface so that options needed for that
particular state are available to the user. You also need to know when and
how to transition from one state to another.

What options are adjusted to reflect application state? A primary option is
a control’s Enabled property. By setting Enabled to False, you disable a
control, making it unavailable to the user. So, if the user is not able to save
a current record, the button that does the save should have an Enabled
property of False. A more drastic disabling of a control is setting its
Visible property to False. In this case, there is no misunderstanding about
application state. As the application moves from one state to another, you
need to determine which controls should be enabled and which should be
disabled.

For text box controls, a property of importance is the ReadOnly property.
If a value in a text box is not to be edited, set ReadOnly to True. When
editing is allowed (the state changes), toggle the ReadOnly property to
False. For text boxes that are always read-only (used for display, not
editing purposes), use color (red is good) to indicate they are not
accessible. When editing in a text box, use the Focus method to place the
cursor in the box, making it the active control (giving it focus) and saving
the user a mouse click. The Focus method can also be used to
programmatically move the user from one text box to the next in a desired
order.

Another mechanism for moving from one control to another in a

prescribed order is the TabIndex property, in conjunction with TabStop.
If TabStop is True, TabIndex defines the order controls become active
(only one control can be active at a time) as the <Tab> key is pressed (the
order is reversed when <Shift>-<Tab> is pressed). When controls are
placed on a form at design time, they are assigned a TabIndex value with
TabStop = true;. If you don’t want a control to be made active with <Tab>,
you need to reset its TabStop property to False. If the assigned order is not
acceptable, reset the TabIndex properties for the desired controls, starting
with a low number and increasing that value with each control added to the
<Tab> sequence. A primary application for <Tab> sequencing is moving
from one text box to the next in a detailed input form.

If the concepts of control focus and tab movements are new or unfamiliar,
try this. Start a new application in Visual C#. Add three buttons (Button1,
Button2, Button3), then three text boxes (Text1, Text2, Text3). Run the
application. The first button (Button1) should have focus (a little outline
box is around the Text). If you press <Enter> at this point, this button is
‘clicked.’ Press the <Tab> key and the focus moves to the second button.
Press <Tab> twice. The focus should now be in the first text box (the
cursor is in the box). Keep pressing <Tab> and watch the focus move from
one control to the other, always in the same order. Pressing <Shift>-<Tab>
reverses the order. Now, for each button, set the TabStop property to
False (removing them from the tab sequence). Re-run the application and
you should note the focus only shifts among the text boxes. Try resetting
the TabIndex properties of the text boxes to change the shift direction.
Always use the idea of focus in your applications to indicate to the user
what control is active.

All of this application state talk may sound complicated, but it really isn’t.
Again, it’s all just a matter of common sense. After you design your
interface, sit back and step through your application in the Visual C#
environment, exercising every option available. With each option, ask
yourself what the user needs to see. Implement the necessary logic to make
sure this is all the user sees. Make sure moves from one state to another are
apparent and correct. Try lots of things until you are comfortable with the
finished product. The Visual C# environment makes performing such tasks
quite easy.

Example 5-4

Authors Table Input Form
(Application State)

The Authors Table Input Form can operate in one of three states: View
state, Add state or Edit state. In View state, the user can navigate from
record to record, switch to Edit state, add and/or delete records, or exit the
application. In both Add and Edit states, no navigation should be possible,
data can be changed, and the user should have access to the Save and
Cancel functions. Each of these states can be implemented using button
Enabled properties and text box ReadOnly properties. We use TabIndex
(and TabOrder) to control shift of focus in the text box controls. We will
use a general method to allow switching from one state to another.

1. Open Example 5-3 in the Visual C# environment. We will modify this
example to include state considerations.

2. Remove the buttons from tab sequencing by setting all (eight buttons) of
their TabStop properties to False. Also set TabStop to False for the
txtAuthorID text box (we will not edit this value - we’ll explain why
later). Set TabIndex for txtAuthorName to 1 and TabIndex for
txtYearBorn to 2.

3. Add a general method named SetState with string argument appState.
Add this code to the SetState method:

private void SetState(string appState)
{

switch (appState)
{

case "View":
txtAuthorID.BackColor = Color.White;
txtAuthorID.ForeColor = Color.Black;
txtAuthorName.ReadOnly = true;

txtYearBorn.ReadOnly = true;
btnPrevious.Enabled = true;
btnNext.Enabled = true;
btnAddNew.Enabled = true;
btnSave.Enabled = false;
btnCancel.Enabled = false;
btnEdit.Enabled = true;
btnDelete.Enabled = true;
btnDone.Enabled = true;
txtAuthorName.Focus();
break;

default: // Add or Edit if not View
txtAuthorID.BackColor = Color.Red;
txtAuthorID.ForeColor = Color.White;
txtAuthorName.ReadOnly = false;
txtYearBorn.ReadOnly = false;
btnPrevious.Enabled = false;
btnNext.Enabled = false;
btnAddNew.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
btnEdit.Enabled = false;
btnDelete.Enabled = false;
btnDone.Enabled = false;
txtAuthorName.Focus();
break;

}
}

This code sets the application in View, Add or Edit state. Note which
buttons are available and which are not. Notice the Author ID box is red
in Add and Edit state to indicate it cannot be changed. Notice that the Add
and Edit states are the same (for now) and are just a ‘toggling’ of the View
state – this will occur quite often – a great place for ‘cut and paste’ coding.

We now need to modify the application code to use this method to move
from state to state.

4. We want to be in the View state when the application is initialized. Add
these two lines at the bottom of the frmAuthors_Load event:

this.Show();
SetState("View");

5. When the Add New button is clicked, we want to switch to Add state.
Add this line of code at the top of the btnAddNew_Click event
method:

SetState("Add");

6. When the Edit button is clicked, we switch to Edit state. Add this line
of code at the top of the btnEdit_Click event method:

SetState("Edit");

7. Following a Cancel or Save operation (in Add or Edit state), we want
to return to View state. Place this line at the end of the
btnCancel_Click and btnSave_Click event methods:

SetState("View");

The Delete button does not need any change of state code – it only works
in View state and stays in that state following a delete.

8. We’re almost done. This is a small change, but an important one that
gives your application a professional touch. Notice that if you click the
Previous button and the pointer is at the first record, nothing changes.
Similarly, at the end of the data table, if you click Next, nothing
happens. This lack of change might confuse the user. To give the user
some feedback that they’ve reached a limit, I like to provide some
audible feedback. Make the shaded changes to the btnPrevious and
btnNext Click event methods to play a beep when the user bumps into
a limit:

private void btnPrevious_Click(object sender, EventArgs e)

{
if (authorsManager.Position == 0)
{

Console.Beep();
}
authorsManager.Position--;

}

private void btnNext_Click(object sender, EventArgs e)
{

if (authorsManager.Position == authorsManager.Count - 1)
{

Console.Beep();
}
authorsManager.Position++;

}

9. Save and run the application (saved in the Example 5-4 folder in
VCSDB\Code\Class 5 folder). The initial (View) state is:

Notice how the various buttons change state as different functions are
accessed on the interface form. In Add and Edit state (the ID box is red),
check the tab order of the two text boxes (a very short tab order!):

In each state, it is obvious to the user what functions are available and
when they are available. Do you hear the beep when you try to move past a
limit at the end or beginning of the data table?

Example 5-4

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Entry Validation
Throughout your work with databases, you will find that viewing database
information is an easy task with Visual C#. Things quickly become
difficult, though, when you want to modify information in a database.
And, things become very difficult when you allow your user to type
information. That’s why, if at all possible, don’t allow your user to type
things. Use point and click type controls whenever possible.

Checking input information from a user requires programming on your
part. You must insure information being put in a database is correct. There
are two steps to checking information from a user: entry validation and
input validation. Entry validation is associated with text box controls and
checks for proper keystrokes. Input validation is associated with several
control types and checks to make sure entries and choices meet certain
requirements. In this section, we address entry validation. Input validation
is addressed in the next section of this chapter.

As mentioned, entry validation checks for proper keystrokes. For example,
if a numerical entry is needed, only allow the pressing of number keys. If
spaces are not allowed, don’t allow them. If an input must be in upper case
letters, don’t allow lower case letters to be typed. Restricting keystrokes is
referred to as key trapping.

Key Trapping
Key trapping is done in the KeyPress event method of a text box control.
Such a method has the form (for a text box named txtExample):

private void txtExample_KeyPress(object sender,
KeyPressEventArgs e)
{

}

What happens in this method is that every time a key is pressed in the
corresponding text box, the KeyPressEventArgs class passes the key that
has been pressed into the method via the char type e.KeyChar property.
Recall the char type is used to represent a single character. We can thus
examine this key. If it is an acceptable key, we set the e.Handled property
to False. This tells Visual C# that this method has not been handled and
the KeyPress should be allowed. If an unacceptable key is detected, we set
e.Handled to true. This ‘tricks’ Visual C# into thinking the KeyPress
event has already been handled and the pressed key is ignored.

We need some way of distinguishing what keys are pressed. The usual
alphabetic, numeric and character keys are fairly simple to detect. To help
detect non-readable keys, we can examine the key’s corresponding
Unicode value. Two values we will use are:

Definition Value
Backspace 8
Carriage return (<Enter> key) 13

As an example, let’s say we have text box (txtExample) and we only want
to enter numbers or a decimal point. There are several ways to build a key
trapping routine. I suggest an if block that, based on different values of
e.KeyChar, takes different steps. If e.KeyChar represents a number, a
decimal point or a backspace key (always include backspace or the user
won’t be able to edit the text box properly), we will allow the keypress

(e.Handled = false). Otherwise, we will set e.Handled = true to ignore the
keypress (we also add a beep). The code to do this is:

if (e.KeyChar >= '0' && e.KeyChar <= '9')
{

// number values
e.Handled = false;

}
else if ((int) e.KeyChar == 8)
{

// backspace
e.Handled = false;

}
else if (e.KeyChar == '.')
{

// decimal point
e.Handled = false;

}
else
{

// any other character
e.Handled = true;

}

Note the use of single quotes to signify char types, the same type as
e.KeyChar.

Example 5-5

Authors Table Input Form
(Entry Validation)

In the Authors Table Input Form, the Year Born field can only be numeric
data.

1. Load Example 5-4 completed earlier. We will modify this example to
include entry validation.

2. Use this code to the txtYearBorn_KeyPress event (make sure you
select the proper event – don’t use the TextChanged event!):

private void txtYearBorn_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((e.KeyChar >= '0' && e.KeyChar <= '9') || (int) e.KeyChar
== 8)
{

//Acceptable keystrokes
e.Handled = false;

}
else
{

e.Handled = true;
Console.Beep();

}
}

3. Save and run the application (saved in the Example 5-5 folder in
VCSDB\Code\Class 5 folder). Click Edit to switch to Edit state. Click
the Year Born text box. Try some typing. You should only be able to

type numbers (or use the backspace key) in the Year Born entry box.
You should hear a beep sound when you type an incorrect key.

Example 5-5

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Input Validation
In the example just studied, although the user can only input numeric data
for the Year Born field, there is no guarantee the final input would be
acceptable. What if the input year is past the current year? What if the year
is 1492? A second step in validation is to check values in context. Do the
input values make sense? Do the values meet established rules? This step
is input validation.

Some common validation rules are:

⇒ Is this field required? If a field is required and no input is provided,
this could cause problems.

⇒ Is the input within an established range? For example, if entering a
day number for the month of April, is the value between 1 and 30?

⇒ Is the input the proper length? Social security numbers (including
hyphens) require 11 characters. If 11 characters are not detected, the
input is not a valid social security number. The C# Length property
can be used here, as can a text box MaxLength property (to limit
the length).

⇒ Is the input conditional? Some fields only need to filled in if other
fields are filled in. For example, if a user clicks to ship to another
address, you need to make sure that address exists.

⇒ Is the input a primary key? If so, and the user has the capability of
entering a value, we must insure it is a unique value. Each primary
key value in a table must be different.

The amount of input validation required is dependent on the particular
field. Many times, there is none needed. You, as the programmer, need to
examine each input field and answer the questions posed above: is the field
required, must it be within a range, is it length restricted, is it conditional?
Any Yes answers require C# code to do the validation. You will probably
find additional questions as you develop your database skills.

Where does the validation code go? It really depends on how you
implement database editing. We will discuss this topic in detail in Chapter
6. For our example we have been creating, we will write a general method

named ValidateData that is called in the Click event of the Save button.
The user clicks this button when done editing, making it a great place to
check validity. If any validation rules are violated, we don’t allow the
requested change(s).

We see entry and input validation require a bit of programming on our
part. But, it is worth it. Field validation insures the integrity of the
information we are putting in a database. We always need to maintain that
integrity. And, one last time for emphasis (are you getting the idea this is
important) – if you can eliminate user typing – do it!

Example 5-6

Authors Table Input Form
(Input Validation)

As mentioned, the Year Born must be validated. We will make sure that,
if an input is attempted (we won’t require a year be input), the year has no
more than four characters, is not greater than the current year and is greater
than 150 years prior to the current year (by not hard coding a minimum
year, the code automatically upgrades itself). We will also make sure the
user enters an Author Name.

1. Load Example 5-5 completed earlier. We will modify this example to
include input validation.

2. Set MaxLength property for txtYearBorn text box to 4.

3. Add a method named ValidateData that returns a Boolean argument (if
true, all validation rules were met). Add this code:

private bool ValidateData()
{

string message = "";
int inputYear, currentYear;
bool allOK = true;
// Check for name
if (txtAuthorName.Text.Trim().Equals(""))
{

message = "You must enter an Author Name." + "\r\n";
txtAuthorName.Focus();
allOK = false;

}
// Check length and range on Year Born

if (!txtYearBorn.Text.Trim().Equals(""))
{

inputYear = Convert.ToInt32(txtYearBorn.Text);
currentYear = DateTime.Now.Year;
if (inputYear > currentYear || inputYear < currentYear -
150)
{

message += "Year born must be between " +
(currentYear - 150).ToString() + " and " +
currentYear.ToString();

txtYearBorn.Focus();
allOK = false;

}
}
if (!allOK)
{

MessageBox.Show(message, "Validation Error",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}
return (allOK);

}

In this code, we first check to see if an Author Name is entered and then
validate the Year Born field. If either validation rule is violated, the
variable allOK is set to false and a message box displayed. If any of this
code is unfamiliar, try Visual C# on-line help for assistance.

4. Modify the btnSave_Click event to read (new lines are shaded):

private void btnSave_Click(object sender, EventArgs e)
{

if (!ValidateData())
{

return;
}

MessageBox.Show("Record saved.", "Save",
MessageBoxButtons.OK, MessageBoxIcon.Information);

SetState("View");
}

In the new line of code, if the ValidateData function returns a false, the
data is not valid and we exit the method.

4. Save and run the application. Click Edit and blank out the Author
Name. Click Save. A message box should appear:

Click OK and the focus is reset on the Author Name text box, helping the
user. Type an invalid numeric value in the Year Born box. Click Save. A
new message should be displayed:

If you attempt a year, you must either enter a valid value or click Cancel.
Try a valid year and valid name – make sure they are accepted.

5. After typing a new Author name, to type a Year Born, you need to click
in that text box. This clicking (especially when working with lots of text
boxes) is cumbersome. A preferred method would be a programmatic
shift of focus. Add this code at the top of the
txtAuthorName_KeyPress event:

private void txtAuthorName_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int) e.KeyChar == 13)
{

txtYearBorn.Focus();
}

}

In this code, if the <Enter> key is pressed, the focus is shifted from the
Author text box to the Year Born text box (if a valid name is input). This
programmatic change of focus is used all the time in database interfaces.
Users like to see the focus move when they press <Enter>. It is an
additional step in maintaining proper application state. To shift from the
Year Born box to the Author box, add the shaded code to the
txtYearBorn_KeyPress event:

private void txtYearBorn_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((e.KeyChar >= '0' && e.KeyChar <= '9') || (int) e.KeyChar
== 8)
{

//Acceptable keystrokes
e.Handled = false;

}
else if ((int)e.KeyChar == 13)
{

txtAuthorName.Focus();
}
else
{

e.Handled = true;
Console.Beep();

}

}

6. Save (saved in the Example 5-6 folder in VCSDB\Code\Class 5 folder)
and run the example again. Click Edit. Notice how the focus shifts
between the two text boxes as you change the values and press <Enter>.
Pressing <Tab> should also change the focus appropriately.

Example 5-6

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Error Trapping and Handling
Even with a well-designed, ‘user-proof’ interface, errors can still occur.
This is especially true when working with databases. Occasionally, data
cannot be written to, or deleted from, the database or invalid fields are
encountered. Without any action on our part, these run-time errors might
bring our application to an unceremonious end. If, however, we recognize
an error has occurred and inform the user of the problem, we might be able
to recover.

Run-time errors (referred to in Visual C# as exceptions) are “catchable.”
That is, Visual C# recognizes an error has occurred and enables you to
catch it and take corrective action (handle the error). As mentioned, if an
error occurs and is not caught, your program will usually end in a rather
unceremonious manner. Most run-time errors occur when your application
is working with files, either trying to open, read, write or save a file. Other
common run-time errors are divide by zero, overflow (exceeding a data
type’s range) and improper data types.

Error trapping and handling must be implemented in every method in your
application where you think it might be needed. Visual C# does not allow
global error trapping. At a minimum, you should implement error trapping
and handling in every method that writes to or reads from the database.

Visual C# uses a structured approach to catching and handling exceptions.
The structure is referred to as a try/catch/finally block. And the annotated
syntax for using this block is:

try
{

// here is code you try where some kind of
// error may occur

}
catch (ExceptionType ex)
{

// if error described by exception of ExceptionType
// occurs, process this code

}
catch (Exception ex)
{

// if any other error occurs, process this code

}
finally
{

// Execute this code whether error occurred or not
// this block is optional

}
// Execution continues here

The above code works from the top, down. It ‘tries’ the code between try
and the first catch statement. If no error is encountered, any code in the
finally block will be executed and the program will continue after the right
brace closing the try/catch/finally block. If an exception (error) occurs,
the program will look to find, if any, the first catch statement (you can
have multiple catch statements and must have at least one) that matches
the exception that occurred. If one is found, the code in that respective
block is executed (code to help clear up the error – the exception
handling), then the code in the finally block, then program execution
continues after the closing brace. If an error occurs that doesn’t match a
particular exception, the code in the ‘generic’ catch block is executed,
followed by the code in the finally block. And, program execution
continues after the closing brace.

This structure can be used to trap and handle any Type of exception
defined in the Visual C# Exception class. There are hundreds of possible
exceptions related to data access, input and output functions, graphics
functions, data types and numerical computations. Here is a list of example
exception types (their names are descriptive of the corresponding error
condition):

ArgumentException ArgumentNullException
ArgumentOutOfRangeException ArithmeticException
ArrayTypeMismatchException DivideByZeroException
DllNotFoundException Exception
FormatException IndexOutOfRangeException
DirectoryNotFoundException EndOfStreamException
FileNotFoundException IOException
OutOfMemoryException OverflowException

Let’s take a closer look at the catch block. When you define a catch block,
you define the exception type you want to catch. For example, if want to
catch a divide by zero condition, an DivideByZeroException, we use:

catch (DivideByZeroException ex)
{

// Code to execute if divide by zero occurs
}

If in the try block, a divide by zero occurs, the code following this catch
statement will be executed. You would probably put a message box here to
tell the user what happened and provide him or her with options of how to
fix the problem. To help with the messaging capability, the optional
variable you define as the exception (ex, in this case) has a Message
property you can use. The message is retrieved using ex.Message.

A try block may be exited using the break statement. Be aware any code
in the finally block will still be executed even if break is encountered.
Once the finally code is executed, program execution continues after the
brace closing the try block.

Example of try block to catch a “file not found” error:

try
{

// Code to open file
}
catch (FileNotFoundException ex)

{
// message box describing the error
MessageBox.Show(ex.Message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);
}
finally
{

//Code to close file (even if error occurred)
}

Example of try block to catch a “formatting” error (happens when trying
to convert an empty text string to a numeric value):

try
{

// Code to format text string
}
catch (FormatException ex)
{

// write code that just sets numeric value to 0.0
}
finally
{

//Code to close file (even if error occurred)
}

Example of a generic error catching routine:

try
{

// Code to try
}
catch (Exception ex)
{

// message box describing the error
MessageBox.Show(ex.Message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);
}
finally
{

//Code to finish the block
}

We’ve only taken a brief look at the structured run-time error handling
capabilities of Visual C#. It is difficult to be more specific without
knowing just what an application’s purpose is. You need to know what
type of errors you are looking for and what corrective actions should be
taken if these errors are encountered. As you build and run your own
applications, you will encounter run-time errors. These errors may be due
to errors in your code. If so, fix them. But, they may also be errors that
arise due to some invalid inputs from your user, because a file does not
meet certain specifications or because a disk drive is not ready. You need
to use error handling to keep such errors from shutting down your
application, leaving your user in a frustrated state.

Example 5-7

Authors Table Input Form (Error
Trapping)

As mentioned, error trapping and handling should be included within
every method where database information is read or written. It should also
be included in methods where database files are being opened or saved.

1. Load Example 5-6 completed earlier. We will modify this example to
include error trapping handling

2. Modify the frmAuthors_Load method to incorporate error handling.
Changes are shaded:

private void frmAuthors_Load(object sender, EventArgs e)
{

try
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
// establish command object
authorsCommand = new OleDbCommand("Select * from

Authors ORDER BY Author", booksConnection);
// establish data adapter/data table
authorsAdapter = new OleDbDataAdapter();
authorsAdapter.SelectCommand = authorsCommand;
authorsTable = new DataTable();
authorsAdapter.Fill(authorsTable);

// bind controls to data table
txtAuthorID.DataBindings.Add("Text", authorsTable,
"Au_ID");
txtAuthorName.DataBindings.Add("Text", authorsTable,
"Author");
txtYearBorn.DataBindings.Add("Text", authorsTable,
"Year_Born");
// establish currency manager
authorsManager =

(CurrencyManager)this.BindingContext[authorsTable];
}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error establishing
Authors table.", MessageBoxButtons.OK,
MessageBoxIcon.Error);

return;
}
this.Show();
SetState("View");

}

3. Modify the btnAddNew_Click, btnSave_Click, and btnDelete_Click
event methods to allow error trapping and handling. Use the generic
code developed in this section, taking advantage of ‘cut and paste’
editing. The changes are shaded (more code will be added later):

private void btnAddNew_Click(object sender, EventArgs e)
{

try
{

SetState("Add");
}
catch (Exception ex)

{
MessageBox.Show("Error adding record.", "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);
}

}

private void btnSave_Click(object sender, EventArgs e)
{

if (!ValidateData())
{

return;
}
try
{

MessageBox.Show("Record saved.", "Save",
MessageBoxButtons.OK, MessageBoxIcon.Information);

SetState("View");
}
catch (Exception ex)
{

MessageBox.Show("Error saving record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

private void btnDelete_Click(object sender, EventArgs e)
{

DialogResult response;
response = MessageBox.Show("Are you sure you want to

delete this record?", "Delete", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2);

if (response == DialogResult.No)
{

return;
}
try
{
}
catch (Exception ex)
{

MessageBox.Show("Error deleting record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

4. Save the application (saved in the Example 5-7 folder in
VCSDB\Code\Class 5 folder). In the connection string, change the
database name to BooksDB1.accdb. Run the application. The error
trapping should display this message telling us it can’t find the
database:

If error trapping were not in place, the user would have no idea what
caused the program to stop. Change the database name back to the correct
value (BooksDB.accdb).

Example 5-7

Using SQL Server Databases
Using the SQL Server version of the project, make the same changes to
frmAuthors_Load, btnAddNew_Click, btnSave_Click, and
btnDelete_Click

On-Line Help Systems
So, at this point, we know how to build a powerful, intuitive interface,
insure valid inputs, and handle any run-time errors that might occur. Even
with all this work, there still may be times when the user is stumped as to
what to do next. Instinct tells the user to press the <F1> function key.
Long ago, someone in the old DOS world decided this would be the magic
“Help Me!” key. Users expect help when pressing <F1> (I’m sure you rely
on it a lot when using Visual C#). If nothing appears after pressing <F1>,
user frustration sets in – not a good thing.

All applications written for other than your personal use should include
some form of an on-line help system. It doesn’t have to be elegant, but it
should be there. Adding a help file to your Visual C# application will give
it real polish, as well as making it easier to use. In this section, we will
show you how to build a very basic on-line help system for your database
applications. This system will simply have a list of help topics the user can
choose from.

We create what is known as an HTML help system. HTML stands for
hypertext markup language and is the ‘programming’ language of
choice for generating web pages. This language will be used to generate
and display the topics displayed in the help system. Fortunately, we won’t
need to learn much (if any) HTML. Building an HTML help system
involves several files and several steps. In diagram form, we have:

We need to create topic files (.HTM files) for each topic in our help
system. (We could also add graphics.) These topics are organized by a

Table of Contents file (.HHC) and Index file (.HHK). The Project File
(.HHP) specifies the components of a help project. All of these files are
‘compiled’ to create the finished help file (.CHM). This file is the file that
can be opened for viewing the finished help system.

The developed help system is similar to help systems used by all Windows
applications. As an example, here is a help system (.CHM file) that
explains how to add or remove programs from your computer:

The left frame is a hierarchical structure (Contents) of clickable topics.
The right frame displays the currently selected topic information. Other
tabs in the left frame allow a user to browse an Index (none shown here)
and Search the help file. The file also features several navigation features
and print options. The key point here is that this help system is familiar to
your user. No new instruction is needed in how to use on-line help.

We will build an HTML help system similar to the one displayed above,
but with minimal features. Learning how to build a full-featured help
system would be a course in itself. In this chapter, we will learn how to
create text-only topics, add a contents file, create a project file and see how
to compile the entire package into a useful (if simple) help system.

Creating a Help File
We could create a help system using only text editors if we knew the
required structure for the various files. We won’t take that approach. The
on-line help system will be built using the Microsoft HTML Help
Workshop. This is a free product from Microsoft that greatly simplifies
the building of a help system. The workshop lets you build and organize
all the files needed for building the help system. Once built, simple clicks
allow compiling and viewing of the help system.

So, obviously, you need to have the workshop installed on your computer.
The HTML Help Workshop can be downloaded from various Microsoft
web sites. To find a download link, go to Microsoft’s web site
(http://www.microsoft.com). Search on “HTML Help” – the search
results should display a topic HTML Downloads. Select that link and you
will be led to a place where you can do the download. Once downloaded,
install the workshop as directed.

Creating a complete help file is a major task and sometimes takes as much
time as creating the application itself! Because of this, we will only skim
over the steps involved, generate a simple example, and provide guidance
for further reference. There are five major steps involved in building your
own help file:

1. Create your application and develop a hierarchical list of help
system topics. This list would consist of headings and topics under
specific headings.

2. Create the topic files (HTM extensions). Please make sure you spell
and grammar check your topic files. If there are mistakes in your
help system, your user base may not have much confidence in the
care you showed in developing your application.

3. Create a Table of Contents (HHC extension).
4. Create the Help Project File (HHP extension).
5. Compile the help file to create your finished help system (CHM

extension).

Step 1 is application-dependent. Here, we’ll look at how to use the HTML
Help Workshop to complete the last four steps.

Starting the HTML Help Workshop
We will demonstrate the use of the HTML Help Workshop to build a
very basic help system. The help file will have two headings. Each heading
will have three sub-topics:

Heading 1
Topic 1
Topic 2
Topic 3
Heading 2
Topic 1
Topic 2
Topic 3

Though simple, the steps followed here can be used to build an adequate
help system. All of the files created while building this help system can be
found in the VCSDB\Code\Class 5\Sample Help folder.

If properly installed, there will be an entry for the help workshop on your
computer’s Programs menu. Click Start, then Programs. Select HTML
Help Workshop, then HTML Help Workshop again. This dialog box
should appear:

We want to start a new project. Select New under the File menu. In the
selection box that appears, choose Project and click OK. A cute little New
Project Wizard appears:

All we need to tell the wizard at this point is the name of our project file.
Click Next. On the next screen, find (or create) the folder to hold your files
(again, I used VCSDB\Code\Class 5\Sample Help) and use the project
name Sample. Click Next two times (make no further selections), then
Finish. The file Sample.hhp is created and you will see:

Creating Topic Files
At this point, we are ready to create our topic files. These are the files your
user can view for help on topics listed in the contents region of the help
system. We will have eight such files in our example (one for each of the
two headings and one for each of the two sets of three topics).

Each file is individually created and saved as an HTM file. To create the
first file (for Heading 1), choose New under the File menu. Select HTML
File and click OK. Enter a name for the file (Heading 1) and click OK. A
topic file HTML framework will appear:

The window on the right is where you type your topic information. The
file has some HTML code there already. If you’ve never seen HTML
before, don’t panic. We will make it easy. We are only concerned with
what goes between the <BODY> and </BODY> ‘tags’. These tags mark
the beginning and end of the text displayed when a user selects this
particular heading topic.

Most HTML tags work in pairs. The first tag says start something, then the
second tag with the slash preface </> says stop something. Hence,
<BODY> says the body of the text starts here. The </BODY> tag says the

body stops here. It’s really pretty easy to understand HTML.

It would help to know just a little more HTML to make your text have a
nice appearance. To change the font, use the FONT tag:

where FontName is the name of the desired font and FontSize the desired
size. Notice this is very similar to the Font constructor in Visual Basic.
When you are done with one font and want to specify a new one, you must
use a tag before specifying the new font. To bold text, use the
 and tags. To delineate a paragraph in HTML,
use the <P> and </P> tags. To cause a line break, use
. There is no
corresponding </BR> tag.

So, using our minimal HTML knowledge (if you know more, use it), we
can create our first topic file. The HTML I used to create the first topic
(Heading1) is:

<BODY>

This is Heading 1

<P>
This is where I explain what the subtopics available under this heading are.
</P>
</BODY>

This HTML will create this finished topic:

When done typing this first topic, choose Close File under the File menu.
Select a file name (I used Heading1.HTM) to use and save the topic file.
Of course, at any time, you can reopen, modify and resave any topic file.

You repeat the above process for every topic in your help system. That is,
create a new file, type your topic and save it. You will have an HTM file

for every topic in your help system. For our example, create seven more
HTM files using whatever text and formatting you desire. The files I
created are saved as: Heading1.HTM, Topic11.HTM, Topic12.HTM,
Topic13.HTM, Heading2.HTM, Topic21.HTM, Topic22.HTM,
Topic23.HTM.

Creating HTML topic files using the Help Workshop is a bit tedious. You
need to use HTML tags and don’t really know what your topic file will
look like until you’ve completed the help system. Using a WYSIWYG
(what you see is what you get) editor is a better choice. Such editors allow
you to create HTML files without knowing any HTML. You just type the
file in a normal word processing-type environment, then save it in HTML
format. There are several WYSIWYG HTML editors available. Check
Internet download sites for options. Also, most word processors offer an
option to save a document as an HTML file. I always use a WYSIWYG
editor (FrontPage is my choice) for topic files. I simply save each topic file
in the same folder as my help system files, just as if I was using the built-
in editor.

Next, we create a Table of Contents file. But, before leaving your topic
files, make sure they are as complete and accurate as possible. And, again,
please check for misspellings – nothing scares a user more than a poorly
prepared help file. They quickly draw the conclusion that if the help
system is not built with care, the application must also be sloppily built.

Creating Table of Contents File
The Table of Contents file specifies the hierarchy of topics to display
when the help system’s Contents tab is selected. In the HTML Help
Workshop, choose the New option under the File menu. Choose Table of
Contents, then click OK. The following window appears:

We want to add two headings with three topics under each. To insert a
heading, in the right frame, click the toolbar button with a folder (Insert a
heading). This window appears:

Type a title for the entry in Entry title (this is what will appear in the
Contents – I used My First Heading).

You also need to link this topic to its topic file (HTM file). To do this,
click Add and this appears:

Click the Browse button and ‘point’ to the corresponding topic file
(Heading1.HTM in this case). Click OK to close this window.

Click OK to close the Table of Contents entry window and you’ll now see:

You’ve created your first entry in the Table of Contents. Notice the icon
next to the heading is an ‘open folder.’ To change this to the more familiar
‘open book,’ click the top toolbar button (Contents properties). In the

window that appears, remove the check mark next to ‘Use Folders
Instead of Books,’ and click OK.

Now, we need to enter our first topic under this first heading. Click the
toolbar button (Insert a page) under the heading button. This dialog will
appear:

Answer No – we want the entry after the heading topic. At this point, you
follow the same steps followed for the heading: enter a title and add a link
to the topic file.

Add Table of Contents entries for all topic files in our little example. Use
whatever titling information you choose. When you enter the second
heading, it will be listed under the third topic in the first heading. To move
it to the left (making it a major heading), right-click the heading and
choose Move Left, the left arrow button on the toolbar). When done, I
have this:

Save the contents file. Choose Close File under the File menu and assign a

name of Sample.HHC to this contents file.

Compiling the Help File
We’re almost ready to compile and create our help system. Before doing
this, we need to add entries to the Project file. The project file at this point
appears as:

We first need to add our topic files. To do this, choose the Add/remove
topic files toolbar button. In the window that appears, click Add, then
select all topics files. You should see:

Click OK.

Now, the project file has the topic files added:

Now, we specify the Table of Contents file and set a few other properties.
Click the Change project options toolbar button. Click the General tab
and type a title for your help system (I used My Sample Help File) and
specify the default file (Heading1.htm):

Click on the Files tab and select Sample.hhc as your contents file. Click
OK to complete specification of your project file. At this point, save all
files by choosing Save Project under the File menu.

We can now compile our project into the finished product – a complete
HTML help system. To do this, click the Compile HTML file button
(resembles a meat grinder) on the workshop toolbar. Browse so your
project file (Sample.hhp) is selected. Choose Compile in the resulting
window and things start ‘grinding.’ If no errors are reported, you should
now have a CHM file in your directory. If errors did occur, you need to fix
any reported problems.

At long last, we can view our finished product. Click on the View
compiled file button (a pair of sunglasses) on the workshop toolbar.
Browse so your help file (Sample.chm) is selected. Choose View, and this
will appear (I’ve expanded the headings to show the topics):

Click to see the various topics and headings displayed.

After all this work, you still only have a simple help file, nothing that
rivals those seen in most applications. But, it is a very adequate help
system. To improve your help system, you need to add more features.
Investigate the HTML Help Workshop for information on tasks such as
adding an index file, using context-sensitive help, adding search
capabilities and adding graphics to the help system.

HelpProvider Control

Once we have a completed HTML help system, we need to connect our
Visual C# application to the help file. You need to decide how you want
your application to interact with the help system. We will demonstrate a
simple approach. We will have the help system appear when the user
presses <F1> or clicks some control related to obtaining help (menu item,
button control). The Visual C# HelpProvider control provides this
connection.

HelpProvider Properties:

Name Gets or sets the name of the help provider
control (three letter prefix for label name is
hlp).

HelpNamespace Complete path to compiled help file (CHM
file)

The HelpNamespace property is usually established at run-time. The help
file is often installed in the application directory (Bin\Debug folder). If
this is the case, we can use the Application.StartupPath parameter to
establish HelpNamespace. You also must include the help file in any
deployment package you build for your application.

To have the help file appear when a user presses <F1>, we set the
HelpNavigator property of the application form to TableofContents.
With this setting, the help file will appear displaying the Table of
Contents, set to the default form.

To have the help file appear in a Click event, we use the ShowHelp
method of the Help object. The Visual C# Help object allows us to display
HTML help files. To replicate the <F1> functionality above, we use the
syntax:

Help.ShowHelp(this, HelpProvider.HelpNamespace);

This line of code will display the specified help file.

Typical use of HelpProvider control:

➢ Set the Name property.
➢ Set HelpNameSpace property in code (file is usually in Bin folder

of application).
➢ Set HelpNavigator property for form to TableofContents.
➢ Write code for events meant to display the help file (use

Help.ShowHelp).

The steps above provide minimal, but sufficient, access to an HTML help
system. If you need more functionality (context-sensitive help, help on
individual controls, pop-up help, adding help to dialog boxes), consult the
Visual C# documentation on the Help Provider control.

Example 5-8

Authors Table Input Form (On-Line
Help)

We will build a simple help system for our Authors Table Input Form and
attach it to our application. Refer back to the notes to complete each step
listed here.

1. Using FrontPage or similar product, prepare a single topic file (saved as
authors.htm in the VCSDB\Code\Class 5\Example 5-8\HelpFile
folder):

2. Using HTML Help Workshop, build a help project file, adding the topic
file (no contents file) (authors.hhp in the VCSDB\Code\Class

5\Example 5-8\HelpFile folder).

3. Using HTML Help Workshop, compile and build the project file
(authors.chm in the VCSDB\Code\Class 5\Example 5-8\HelpFile
folder).

4. Copy authors.chm to your application’s Bin\Debug folder (you may
have to create the folder first).

5. Load Example 5-7 completed earlier. We will modify this example to
include our help system. Add a help provider control to the project –
name it hlpAuthors. Set the HelpNavigator property of frmAuthors
to TableofContents.

6. Add the shaded code near the top of the frmAuthors_Load method.
This code points to the help file in the project’s application folder:

private void frmAuthors_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpAuthors.HelpNamespace = Application.StartupPath +
"\\authors.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
// establish command object

.

.
}

7. Add a button to the form. Assign a Text of &Help and a Name of
btnHelp. The form now looks like this:

8. Use this code in the btnHelp_Click event to display the help file:

private void btnHelp_Click(object sender, EventArgs e)
{

Help.ShowHelp(this, hlpAuthors.HelpNamespace);
}

9. Save (saved in the Example 5-8 folder in VCSDB\Code\Class 5 folder)
and run the application. Press <F1> or click Help. With either, you
should see the help file:

Example 5-8

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Application Testing
Our discussion of Visual C# interface design has, for now, come to an end.
And, we have a fairly complete interface for the books database Authors
table. We, obviously, still need the remainder of the code that goes behind
the buttons. We’ll do that in the next chapter.

Once you have completed an application, you need to test it to make sure it
performs as expected. If you are careful in building your application, no
big surprises should appear in this final testing. In fact, the Visual C#
environment helps achieve this goal. The event-driven nature of Visual C#
makes it easy to build an application in stages, testing and debugging each
stage as it is built. In other words, you don’t have to have a complete
application before testing can begin. We have done this with the Authors
table example.

The event-driven nature of Visual C# also makes it easy to modify an
application. We will see in Chapter 6, as we modify the books database
example, that we have made some omissions and errors in our design. But
these omissions and errors will be easily corrected using the Visual C#
environment. These corrections will give you additional insight into
application building and testing process.

Let others (particularly potential users) try your application and see if its
use is as obvious as you planned it to be. Are the inputs and outputs of the
project appropriate? Is application state clear? Implement and retest any
necessary changes, based on user feedback. And, keep track of all
feedback after you ‘release’ your application. This information can be used
in future updates of your product.

Before leaving this chapter, let’s look at some other Visual C# controls
that you might like to use in your database interface arsenal.

Other Controls
In addition to the standard Visual C# controls discussed earlier in this
chapter, there are many other controls that can be used to build a database
interface. If not in the toolbox, these controls will have to be added to the
Visual C# toolbox before they can be used.

To load a control, make sure the toolbox is visible in the development
environment. Choose Choose Toolbox Items from the Visual C# Tools
menu. Select .NET Framework Components in the resulting dialog:

To add a control or controls, select the check box next to the desired
selection(s). When done, choose OK and the selected control(s) will now
appear in the toolbox. The Visual C# on-line help system can provide
details for usage.

Here, we look at several other controls (some data bound, some not) and
how they can be used with a Visual C# interface.

MaskedTextBox Control

The masked text box control is a data bound control used to prompt users
for data input using a mask pattern. It works like a text box, but the mask
allows you to specify exactly the desired input format. In a database, this
control could be used to prompt for a date, a time, number, or currency
value. Or it could be used to prompt for something that follows a pattern,
like a phone number or social security number. Use of this control can
eliminate many of the entry validation problems mentioned earlier in the
chapter. If needed, to load this control into the toolbox, select
MaskedTextBox from the .NET Framework Components dialog box.

Masked Text Box Properties:

Mask Determines the type of information that is
input into the control. It uses characters to
define the type of input. Check on-line help
for mask formatting.

PromptChar Character used for missing information.
Text Contains data entered into the control

(including all prompt characters of the input
mask). This is the property bound to the
database.

TextMaskFormat Used to indicate if the Text property includes
literal and prompts used.

Masked Text Box Events:

Leave Event called when the user leaves the
control.

LostFocus Event called when control loses focus.
MaskInputRejected Event called when the data being entered by

the user does not match the input mask.

Typical use of MaskedTextBox control:

➢ Set the Name property. Initialize Text property to desired string.
Set Mask property.

➢ In code, give Focus to control when needed. Read Text property
when Leave event occurs.

➢ You may also want to change the Font, Backcolor and Forecolor
properties.

This control features built-in input validation to lessen your tasks as a
programmer. We will use the masked edit control in some of our example
applications in later chapters.

NumericUpDown Control

The NumericUpDown control is used to obtain a numeric input. It looks
like a text box control with two small arrows. Clicking the arrows changes
the displayed value, which ranges from a specified minimum to a specified
maximum. The user can even type in a value, if desired. Such controls are
useful for supplying a date in a month or are used as volume controls in
some Windows multimedia applications.

NumericUpDown Properties:

Name Gets or sets the name of the numeric updown
(three letter prefix for numeric updown name
is nud).

BackColor Get or sets the numeric updown background
color.

BorderStyle Gets or sets the border style for the updown
control.

Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
Increment Gets or sets the value to increment or

decrement the updown control when the up or
down buttons are clicked.

Maximum Gets or sets the maximum value for the
updown control.

Minimum Gets or sets the minimum value for the
updown control.

ReadOnly Gets or sets a value indicating whether the
text may be changed by the use of the up or
down buttons only.

TextAlign Gets or sets the alignment of text in the
numeric updown.

Value Gets or sets the value assigned to the updown
control.

NumericUpDown Methods:

DownButton Decrements the value of the updown control.
UpButton Increments the value of the updown control.

NumericUpDown Events:

Leave Occurs when the updown control loses focus.
ValueChanged Occurs when the Value property has been

changed in some way.

The Value property can be changed by clicking either of the arrows or,
optionally by typing a value. If using the arrows, the value will always lie
between Minimum and Maximum. If the user can type in a value, you
have no control over what value is typed. However, once the control loses
focus, the typed value will be compared to Minimum and Maximum and
any adjustments made. Hence, if you allow typed values, only check the
Value property in the Leave event.

Typical use of NumericUpDown control:

➢ Set the Name, Minimum and Maximum properties. Initialize
Value property. Decide on value for ReadOnly.

➢ Monitor ValueChanged (or Leave) event for changes in Value.
➢ You may also want to change the Font, Backcolor and Forecolor

properties.

The NumericUpDown control is a ‘point-and-click’ type control that can
be used in place of a user’s typed input. We will use the NumericUpDown
control in some of our example applications in later chapters.

TabControl Control

The TabControl control provides an easy way to present several dialogs
or screens of information on a single form. This is the same interface seen
in many commercial Windows applications. The tab control provides a
group of tabs, each of which acts as a container (works just like a group
box or panel) for other controls. In particular, groups of radio buttons
within a tab ‘page’ operate as an independent group. Only one tab can be
active at a time. Using this control is easy. Just build each tab container as
a separate group: add controls, set properties, and write code like you do
for any application. Navigation from one tab to the next is simple: just
click on the corresponding tab.

TabControl Properties:

Name Gets or sets the name of the tab control (three
letter prefix for control name is tab).

BackColor Get or sets the tab control background color.
BorderStyle Gets or sets the border style for the tab

control.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
ItemSize Size structure determining tab size.
SelectedIndex Gets or sets the currently displayed tab index.
SizeMode Determines how tabs are sized.
TabPages Collection describing each tab page.

TabControl Events:

SelectedIndexChanged Occurs when the SelectedIndex property
changes.

The most important property for the tab control is TabPages. It is used to
design each tab (known as a TabPage). Choosing the TabPages property
in the Properties window and clicking the ellipsis that appears will display
the TabPage Collection Editor. With this editor, you can add, delete,
insert and move tab pages. To add a tab page, click the Add button. A
name and index will be assigned to a tab. There are two tabs added
initially so the editor appears like this:

Add as many tab pages as you like. The tab page ‘array’ is zero-based;
hence, if you have N tabs, the first is index 0, the last index N – 1. You can
change any property you desire in the Properties area.

TabPage Properties:

Name Gets or sets the name of the tab page (three
letter prefix for control name is tab).

BackColor Get or sets the tab page background color.
BorderStyle Gets or sets the border style for the tab page.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
Text Titling information appearing on tab.

When done, click OK to leave the TabPage Collection Editor.

The next step is to add controls to each ‘page’ of the tab control. This is
straightforward. Simply display the desired tab page by clicking on the tab.
Then place controls on the tab page, treating the page like a group box or
panel control. Make sure your controls become ‘attached’ to the tab page.
You can still place controls on the form that are not associated with any
tab. As the programmer, you need to know which tab is active
(SelectedIndex property). And, you need to keep track of which controls
are available with each tab page.

Typical use of TabControl control:

➢ Set the Name property and size appropriately.
➢ Establish each tab page using the TabPage Collection Editor.
➢ Add controls to tabs and form.
➢ Write code for the various events associated with controls on the tab

control and form.

The tab control is becoming a very popular control in Windows
applications. It allows you to put a lot of ‘input power’ into a single form -
minimizing the need for multi-form applications. We will use the tab
control in a Weather Monitor example in Chapter 10.

ToolStrip (Toolbar) Control

Almost all Windows applications these days use toolbars. A toolbar
provides quick access to the most frequently used menu commands in an
application. In a database application, it could be used to add, delete, or
edit records. It could be used to access database reports or obtain different
database views. The ToolStrip control (also referred to as the Toolbar
control) is a mini-application in itself. It provides everything you need to
design and implement a toolbar into your application. Possible uses for this
control include: provide a consistent interface between applications with
matching toolbars, place commonly used functions in an easily-accessed
space and provide an intuitive, graphical interface for your application.

ToolStrip Properties:

Name Gets or sets the name of the toolstrip (toolbar)
control (three letter prefix for label name is
tlb).

BackColor Background color of toolstrip.
Items Gets the collection of controls assigned to the

toolstrip control.
LayoutStyle Establishes whether toolbar is vertical or

horizontal.
Dock Establishes location of toolbar on form.

The primary property of concern is the Items collection. This establishes
each item in the toolbar. Choosing the Items property in the Properties
window and clicking the ellipsis that appears will display the Items
Collection Editor. With this editor, you can add, delete, insert and move
items. We will look at adding just two types of items: ToolStripButton
and ToolStripSeparator (used to separate tool bar buttons). To add a
button, make sure ToolStripButton appears in the drop-down box and
click the Add button. A name will be assigned to a button. After adding

one button, the editor will look like this:

Add as many buttons as you like. You can change any property you desire
in the Properties area.

ToolStripButton Properties:

Name Gets or sets the name of the button (three
letter prefix for control name is tlb).

DisplayStyle Sets whether image, text or both are
displayed on button.

Image Image to display on button.
Text Caption information on the button, often

blank.
TextImageRelation Where text appears relative to image.
ToolTipText Text to display in button tool tip.

To add a separator, make sure ToolStripSeparator appears in drop-down
box and click Add. When done editing buttons, click OK to leave the
Items Collection Editor.

Setting the Image property requires a few steps (a process similar to that
used for the picture box control). First, click the ellipsis next to the Image

property in the property window. This Select Resource window will
appear:

The images will be a local resource, so select the Local resource radio
button and click the Import button.

An Open window will display graphics files (if you want to see an ico file,
you must change Files of type to All Files). In the VCSDB\Code\Class 5
folder is a folder named Toolbar Graphics. In this folder, there are many
bitmap files for toolbar use:

Select the desired file and click Open. Once an image is selected, click
OK in the Select Resource window. It will be assigned to the Image
property

After setting up the toolbar, you need to write code for the Click event for
each toolbar button. This event is the same Click event we encounter for
button controls.

Typical use of ToolStrip control:

➢ Set the Name property and desired location.
➢ Decide on image, text, and tooltip text for each button.
➢ Establish each button/separator using the Items Collection Editor.
➢ Write code for the each toolbar button’s Click event.

The toolbar is a very powerful and professional tool. And, it’s easy to
implement and use. Try to use it whenever it fits the design of your
interface.

ListBox Control

A ListBox control displays a list of items (with as many items as you like)
from which the user can select one or more items. If the number of items
exceeds the number that can be displayed, a scroll bar is automatically
added. Both single item and multiple item selections are supported. For
database applications, you can display multiple rows of data (a given field)
in the same control (see the DataSource and DisplayMember properties).

ListBox Properties:

Name Gets or sets the name of the list box (three
letter prefix for list box name is lst).

BackColor Get or sets the list box background color.
DataSource Data table to bind control to.
DisplayMember Field from data source to display.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text.
Items Gets the Items object of the list box.
SelectedIndex Gets or sets the zero-based index of the

currently selected item in a list box.
SelectedIndices Zero-based array of indices of all currently

selected items in the list box.
SelectedItem Gets or sets the currently selected item in the

list box.
SelectedItems SelectedItems object of the list box.
SelectedValue The value provided by/to the ValueMember

for data binding.
SelectionMode Gets or sets the method in which items are

selected in list box (allows single or multiple
selections).

Sorted Gets or sets a value indicating whether the

items in list box are sorted alphabetically.
Text Text of currently selected item in list box.
TopIndex Gets or sets the index of the first visible item

in list box.
ValueMember The data source field corresponding to same

record shown by DisplayMember.

ListBox Methods:

ClearSelected Unselects all items in the list box.
FindString Finds the first item in the list box that starts

with the specified string.
GetSelected Returns a value indicating whether the

specified item is selected.
SetSelected Selects or clears the selection for the specified

item in a list box.

ListBox Events:

SelectedIndexChanged Occurs when the SelectedIndex property
has changed.

One use for the data bound list control is to fill the list (DisplayMember)
from a database table (DataSource), then allow selections. This allows us
to list all values of a particular field in a database table. The selections can
be used by any control on a form, whether it is data bound or not. For the
BooksDB.accdb database Authors table we’ve been using, if we display
the Author field, a list box will show:

More complex data binding (using the SelectedValue and ValueMember
properties) is possible. We will look at this complex binding as we develop
a management system for the books database in later chapters (see
Example 6-9).

Some further discussion is need to use the list box Items object,
SelectedItems object and SelectionMode property. The Items object has
its own properties to specify the items in the list box. It also has its own
methods for adding and deleting items in the list box. The Items object is a
zero-based array of the items in the list and Count (a property of Items) is
the number of items in the list. Hence, the first item in a list box named
lstExample is:

lstExample.Items[0]

The last item in the list is:

lstExample.Items[lstExample.Items.Count – 1]

The minus one is needed because of the zero-based array.

To add an item to a list box, use the Add method, to delete an item, use the
Remove or RemoveAt method and to clear a list box use the Clear
method. For our example list box, the respective commands are:

Add Item: lstExample.Items.Add(ItemToAdd)
Delete
Item:

lstExample.Items.Remove(ItemToRemove)

lstExample.Items.RemoveAt(IndexofItemToRemove)
Clear list
box:

lstExample.Items.Clear

List boxes normally list string data types, though other types are possible.
Note, when removing items, that indices for subsequent items in the list
change following a removal.

In a similar fashion, the SelectedItems object has its own properties to
specify the currently selected items in the list box Of particular use is
Count which tells you how many items are selected. This value, in

conjunction with the SelectedIndices array, identifies the set of selected
items.

The SelectionMode property specifies whether you want single item
selection or multiple selections. When the property is
SelectionMode.One, you can select only one item (works like a group of
radio buttons). When the SelectionMode property is set to
SelectionMode.MultiExtended, pressing <Shift> and clicking the mouse
or pressing <Shift>and one of the arrow keys extends the selection from
the previously selected item to the current item. Pressing <Ctrl>and
clicking the mouse selects or deselects an item in the list. When the
property is set to SelectionMode.MultiSimple, a mouse click or pressing
the spacebar selects or deselects an item in the list.

Typical use of ListBox control:

➢ Set Name property, SelectionMode property and populate Items
object (usually in Form_Load method).

➢ If using with database, set DataSource property to desired data
table and DisplayMember property to corresponding data table
field.

➢ Monitor SelectedIndexChanged event for individual selections.
➢ Use SelectedIndex and SelectIndices properties to determine

selected items.

ComboBox Control

The combo box control is nearly identical to the list box, hence we won’t
look at a separate set of properties or another example. A primary
difference between the two controls is the way data is displayed – the
combo control has a list box portion and a text box portion that displays
the selected item. And, with the combo control, the user is (optionally)
given the opportunity to type in a choice not in the list box.

As mentioned, data display is different with the combo control. Display is
established by the DropDownStyle property:

Style Description
DropDown Drop-down list box, user can change selection
Simple Displayed list box, user can change selection
DropDownList Drop-down list box, user cannot change selection

When using the Simple style, make sure you sufficiently size the control
(so the list box portion appears) when it is placed on the form.

Typical use of ComboBox control:

➢ Set Name property, DropDownStyle property and populate Items
object (usually in Form_Load method).

➢ If using with database, set DataSource property to desired data
table and DisplayMember property to corresponding data table
field.

➢ Monitor SelectedIndexChanged event for individual selections.
➢ Use SelectedIndex or Text properties to determine selected item.

When should you use the combo control instead of the list box control?
The combo control is an excellent data entry control. Its advantage over

the list box is that it provides experienced users the ability to type in values
they know are correct, speeding up the data entry process. The list box
control does not allow any typing. It is also a good control when you are
short on form space. Using the DropDownList style replicates the
functionality of the list box control without needing space for the list box.

DataGridView Control

The data grid view control tool is one of the most useful data bound
controls. It can display an entire database table. The table can then be
edited as desired. Recall we used this control in our SQL Tester program
in Chapter 4.

The data bound grid control is in a class by itself, when considering its
capabilities. It is essentially a separate, highly functional program. It has
one primary property:

DataSource Name of the data table to display.

The data grid view control is a collection of DataColumn objects,
corresponding to fields in the table, and DataRow objects, corresponding
to records. Cells can be accessed and edited via mouse operations or
programmatically.

For the books database, if we display the Authors table (DataSource
property) we’ve been using in a data grid view, we will see:

Typical use of DataGridView control:

➢ Set Name property.

➢ Set DataSource property to desired data table.
➢ Add any desired editing features.

You are encouraged to further study the data grid view control (properties,
events, methods) as you progress in your database studies. We will use it
in applications studied in later chapters.

MonthCalendar Control

The MonthCalendar control allows a user to select a date. It is a very
easy to use interface – just point and click. This control is useful for
ordering information, making reservations or choosing the current date. It
can be used to select a single date or a range of dates.

MonthCalendar Properties:

Name Gets or sets the name of the month calendar
(three letter prefix for label name is cal).

BackColor Get or sets the month calendar background
color.

CalendarDimensions Gets or sets the number of columns and
rows of months displayed.

FirstDayOfWeek Gets or sets the first day of the week as
displayed in the month calendar.

Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
MaxDate Gets or sets the maximum allowable date.
MaxSelectionCount The maximum number of days that can be

selected in a month calendar control.
MinDate Gets or sets the minimum allowable date.
SelectionEnd Gets or sets the end date of the selected

range of dates.
SelectionRange Retrieves the selected range of dates for a

month calendar control.
SelectionStart Gets or sets the start date of the selected

range of dates.
ShowToday Gets or sets a value indicating whether the

date represent by the TodayDate property is
shown at the bottom of the control.

ShowTodayCircle Gets or sets a value indicating whether
today's date is circled.

TodayDate Gets or sets the value that is used by
MonthCalendar as today's date.

MonthCalendar Methods:

SetDate Sets date as the current selected date.

MonthCalendar Events:

DateChanged Occurs when the date in the MonthCalendar
changes.

DateSelected Occurs when a date is selected.

Typical use of MonthCalendar control:

➢ Set the Name property. Set MaxSelectionCount (set to 1 if just
picking a single date).

➢ Monitor DateChanged and/or DateSelected events to determine
date value(s). Values are between SelectionStart and SelectionEnd
properties.

DateTimePicker Control

The DateTimePicker control works like the MonthCalendar control with
a different interface and formatting options. It allows the user to select a
single date. The selected date appears in a combo box. The calendar
portion is available as a ‘drop down.’ This control can also be used to
select a time; we won’t look at that option.

DateTimePicker Properties:

Name Gets or sets the name of the date/time picker
control (three letter prefix for label name is
dtp).

BackColor Get or sets the control background color.
Font Gets or sets font name, style, size.
ForeColor Gets or sets color of text or graphics.
Format Gets or sets the format of the date displayed

in the control.
MaxDate Gets or sets the maximum allowable date.
MinDate Gets or sets the minimum allowable date.
Value Gets or sets the date value assigned to the

control.

DateTimePicker Events:

ValueChanged Occurs when the Value property changes.

Typical use of DateTimePicker control:

➢ Set the Name and Format properties.
➢ When needed, read Value property for selected date.

OpenFileDialog Control

In all examples studied in this course, the database name has been assumed
to be known at design time (before running the application). There will be
times when this is not true. For example, say a schoolteacher uses a
database application to keep track of grades. There will database files for
each class. When the teacher starts the application, he or she needs to
specify which particular database file is being accessed and that file needs
to be opened at run-time. Not only do we need the capability to open a user
specified file, but we also need to be able to save database files with user
specified names.

What we need from the user, whether opening or saving files is a complete
path to the filename of interest. We could provide a text box and ask the
user to type the path, but that’s only asking for trouble. We would have to
validate existence of drives, directories, and files! Fortunately, we can use
the Windows standard interface for working with files. Visual C# provides
this interface through the common dialog controls. These controls display
the same interface you see when opening or saving a file in any Windows
application. Such an interface is familiar to any Windows user and gives
your application a professional look. And, some context-sensitive help is
available while the interface is displayed. Let’s look first at the open file
dialog control.

OpenFileDialog Properties:

Name Gets or sets the name of the open file dialog (I
usually name this control dlgOpen).

AddExtension Gets or sets a value indicating whether the
dialog box automatically adds an extension to
a file name if the user omits the extension.

CheckFileExists Gets or sets a value indicating whether the
dialog box displays a warning if the user

specifies a file name that does not exist.
CheckPathExists Gets or sets a value indicating whether the

dialog box displays a warning if the user
specifies a path that does not exist.

DefaultExt Gets or sets the default file extension.
FileName Gets or sets a string containing the file name

selected in the file dialog box.
Filter Gets or sets the current file name filter string,

which determines the choices that appear in
"Files of type" box.

FilterIndex Gets or sets the index of the filter currently
selected in the file dialog box.

InitialDirectory Gets or sets the initial directory displayed by
the file dialog box.

Title Gets or sets the file dialog box title.

OpenFileDialog Methods:

ShowDialog Displays the dialog box. Returned value
indicates which button was clicked by user
(OK or Cancel).

To use the OpenFileDialog control, we add it to our application the same
as any control. Since the OpenFileDialog control has no immediate user
interface (you control when it appears), the control does not appear on the
form at design time. Such Visual C# appear in a ‘tray’ below the form in
the IDE Design window. Once added, we set a few properties. Then, we
write code to make the dialog box appear when desired. The user then
makes selections and closes the dialog box. At this point, we use the
provided information for our tasks.

The ShowDialog method is used to display the OpenFileDialog control.
For a control named dlgOpen, the appropriate code is:

dlgOpen.ShowDialog();

And the displayed dialog box is similar to this:

The user selects a file using the dialog control (or types a name in the File
name box). The file type is selected form the Files of type box (values
here set with the Filter property). Once selected, the Open button is
clicked. Cancel can be clicked to cancel the open operation. The
ShowDialog method returns the clicked button. It returns
DialogResult.OK if Open is clicked and returns DialogResult.Cancel if
Cancel is clicked. The nice thing about this control is that it can validate
the file name before it is returned to the application. The FileName
property contains the complete path to the selected file.

Typical use of OpenFileDialog control:

➢ Set the Name, Filter, and Title properties.
➢ Use ShowDialog method to display dialog box.
➢ Read FileName property to determine selected file

SaveFileDialog Control

To obtain a file name for saving we use the SaveFileDialog control. This
control insures that any path selected for saving a file exists and that if an
existing file is selected, the user has agreed to overwriting that file.

SaveFileDialog Properties:

Name Gets or sets the name of the save file dialog (I
usually name this control dlgSave).

AddExtension Indicates whether the dialog box
automatically adds an extension to a file name
if the user omits the extension.

CheckFileExists Indicates whether the whether the dialog box
displays a warning if the user specifies a file
name that does not exist. Useful if you want
the user to save to an existing file.

CheckPathExists Indicates whether the dialog box displays a
warning if the user specifies a path that does
not exist.

CreatePrompt Indicates whether the dialog box prompts the
user for permission to create a file if the user
specifies a file that does not exist.

DefaultExt Gets or sets the default file extension.
FileName Gets or sets a string containing the file name

selected in the file dialog box.
Filter Gets or sets the current file name filter string,

which determines the choices that appear in
"Files of type" box.

FilterIndex Gets or sets the index of the filter currently
selected in the file dialog box.

InitialDirectory Gets or sets the initial directory displayed by

the file dialog box.
OverwritePrompt Indicates whether the dialog box displays a

warning if the user specifies a file name that
already exists. Default value is True.

Title Gets or sets the file dialog box title.

SaveFileDialog Methods:

ShowDialog Displays the dialog box. Returned value
indicates which button was clicked by user
(OK or Cancel).

The SaveFileDialog control will appear in the tray area of the design
window. The ShowDialog method is used to display the SaveFileDialog
control. For a control named dlgSave, the appropriate code is:

dlgSave.ShowDialog();

And the displayed dialog box is similar to this:

The user types a name in the File name box (or selects a file using the
dialog control). The file type is selected form the Files of type box (values
here set with the Filter property). Once selected, the Save button is
clicked. Cancel can be clicked to cancel the save operation. If the user
selects an existing file and clicks Save, the following dialog will appear:

This is the aforementioned protection against inadvertently overwriting an
existing file.

The ShowDialog method returns the clicked button. It returns
DialogResult.OK if Save is clicked and returns DialogResult.Cancel if
Cancel is clicked. The FileName property contains the complete path to
the selected file.

Typical use of SaveFileDialog control:

➢ Set the Name, DefaultExt, Filter, and Title properties.
➢ Use ShowDialog method to display dialog box.
➢ Read FileName property to determine selected file

Summary
There is wealth of material covered here. You now have a complete
reference to the Visual C# toolbox and how those tools can be used for
proper interface design. The Visual C# interface is very important and we
wanted to make sure you have many tools at your disposal. This will make
your (and your user’s) task much easier.

Even with all this work, our interface is not complete. We still need code
that allows us to edit, add, and delete records from a database. We need to
know how to validate and save changes properly. We need to know how to
‘undo’ unwanted changes. We need to know how to properly exit an
application. These topics, and more, are covered in the next chapter where
we learn to design the total database management system.

Example 5-9

Publishers Table Input Form
In this chapter, we built the framework for an interface that allows us to
maintain the Authors table in the books database (BooksDB.accdb). This
framework will be modified in the next chapter and implemented as part of
a complete database management system. This database management
system will also need interfaces to maintain the Publishers and Titles
tables. The Titles table interface is a little tricky, in that it uses foreign
keys to reference information in other tables. We will develop this
interface in the next chapter. As an exercise here, we will begin the
interface to maintain the Publishers table.

We will follow the same steps used in this chapter to build the Authors
table input form:

• Build interface
• Add message box(es)
• Code application state
• Perform entry validation
• Perform input validation
• Add error trapping and handling
• Add on-line help system
• Application testing

Rather than starting from scratch, however, we will follow a ‘tried and
true’ programming method – adapting an existing application to a new use.
The Publishers table interface will essentially be the same as the Authors
table interface. It will just have more (and different) input fields. Adapting
an existing application saves us programmers a lot of time. You do have to
make sure the modification implements the needs of the new application
while at the same time eliminates vestiges of the old application. This
exercise illustrates the modification steps followed and crosschecks
required. An important step: Save your work often. You want to make sure

your changes are always there.

Build Interface
1. Make a copy of the Example 5-8 project folder (the last version of the

Authors table input form). Rename the newly copied folder to
something else (I used Example 5-9). We now have a copy of the
Authors table input form project to modify to a Publishers table input
form. Open the copied project in Visual C#. The Publishers table has
ten (10) fields that must be input:

PubID
Name
Company_Name
Address
City
State
Zip
Telephone
Fax
Comments

The SQL statement needed by the command object to retrieve these fields
(sorted by the Name field) is:

SELECT * FROM Publishers ORDER BY Name

We need a label and text box for each fields. Resize the form so it is much
taller (tall enough to hold ten labels and text boxes). Move the buttons to
the bottom of the resized form. Don’t worry where things are right now –
they can always be resized and/or moved later.

2. Change these properties on the existing form, labels and text box
controls as:

frmAuthors (current name):
Name frmPublishers
Text Publishers

Label1 (current name):
Text Publisher ID

txtAuthorID (current name):
Name txtPubID

Label2 (current name):
Text Name

txtAuthorName (current name):
Name txtPubName

Label3 (current name):
Text Company Name

txtYearBorn (current name):
Name txtCompanyName
MaxLength 32767

3. Add seven additional label and text box controls. Set these properties:

Label4:
Text Address

TextBox1:
Name txtPubAddress
BackColor White
ReadOnly True
TabIndex 3

Label5:
Text City

TextBox2:
Name txtPubCity
BackColor White
ReadOnly True
TabIndex 4

Label6:
Text State

TextBox3:
Name txtPubState
BackColor White
ReadOnly True
TabIndex 5

Label7:
Text Zip

TextBox4:
Name txtPubZip
BackColor White
ReadOnly True
TabIndex 6

Label8:
Text Telephone

TextBox5:
Name txtPubTelephone
BackColor White
ReadOnly True
TabIndex 7

Label9:
Text FAX

TextBox6:
Name txtPubFAX
BackColor White
ReadOnly True
TabIndex 8

Label10:
Text Comments

TextBox7:
Name txtPubComments
BackColor White
ReadOnly True
TabIndex 9

At this point, my modified form looks like this:

The interface looks good. Let’s eliminate the vestiges (old code) from the

application and add any needed new code.

4. We rename the data objects to reflect the Publishers table. Make the
shaded changes to the Form level declarations:

OleDbConnection booksConnection;
OleDbCommand publishersCommand;
OleDbDataAdapter publishersAdapter;
DataTable publishersTable;
CurrencyManager publishersManager;

5. Make the shaded changes to the Form Load event method (you will
have to reassign this method to the Load event):

private void frmPublishers_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpAuthors.HelpNamespace = Application.StartupPath +
"\\authors.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
// establish command object
publishersCommand = new OleDbCommand("SELECT *
FROM

Publishers ORDER BY Name", booksConnection);
// establish data adapter/data table
publishersAdapter = new OleDbDataAdapter();
publishersAdapter.SelectCommand = publishersCommand;
publishersTable = new DataTable();
publishersAdapter.Fill(publishersTable);

// bind controls to data table
txtPubID.DataBindings.Add("Text", publishersTable,
"PubID");
txtPubName.DataBindings.Add("Text", publishersTable,
"Name");
txtCompanyName.DataBindings.Add("Text",
publishersTable, "Company_Name");
txtPubAddress.DataBindings.Add("Text", publishersTable,
"Address");
txtPubCity.DataBindings.Add("Text", publishersTable,
"City");
txtPubState.DataBindings.Add("Text", publishersTable,
"State");
txtPubZip.DataBindings.Add("Text", publishersTable,
"Zip");
txtPubTelephone.DataBindings.Add("Text",
publishersTable, "Telephone");
txtPubFAX.DataBindings.Add("Text", publishersTable,
"FAX");
txtPubComments.DataBindings.Add("Text",
publishersTable, "Comments");
// establish currency manager
publishersManager =

(CurrencyManager)this.BindingContext[publishersTable];
}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error establishing
Publishers table.", MessageBoxButtons.OK,
MessageBoxIcon.Error);

return;
}
this.Show();
SetState("View");

}

These changes reflect the new data object naming, the new SQL string and
the proper data binding for the text box controls.

6. Make the shaded name change in the FormClosing method (you will
have to reassign this method to the FormClosing event):

private void frmPublishers_FormClosing(object sender,
FormClosingEventArgs e)
{

// close the connection
booksConnection.Close();
// dispose of the objects
booksConnection.Dispose();
publishersCommand.Dispose();
publishersAdapter.Dispose();
publishersTable.Dispose();

}

7. Make the shaded changes to the btnPrevious and btnNext Click event
methods to reflect new name for currency manager:

private void btnPrevious_Click(object sender, EventArgs e)
{

if (publishersManager.Position == 0)
{

Console.Beep();
}
publishersManager.Position--;

}

private void btnNext_Click(object sender, EventArgs e)
{

if (publishersManager.Position ==
publishersManager.Count - 1)

{
Console.Beep();

}
publishersManager.Position++;

}

Add Message Box(es)
In its current state, all the message boxes within our code, except one, are
generic in nature. These generic message boxes can be left as is. The one
exception is the message box we added to inform the user if they typed an
invalid date for the old Year Born field. This message box will be deleted
in the next step.

Code Application State
1. In this step, we modify the code to reflect proper application state. We

will eliminate all old code, so when we are done the application will run
without errors. The biggest changes are in the SetState method. The
modification locks and unlocks the text boxes (using the ReadOnly
property), depending on state. The method is (new code is shaded):

private void SetState(string appState)
{

switch (appState)
{

case "View":
txtPubID.BackColor = Color.White;
txtPubID.ForeColor = Color.Black;
txtPubName.ReadOnly = true;
txtCompanyName.ReadOnly = true;
txtPubAddress.ReadOnly = true;
txtPubCity.ReadOnly = true;
txtPubState.ReadOnly = true;
txtPubZip.ReadOnly = true;
txtPubTelephone.ReadOnly = true;
txtPubFAX.ReadOnly = true;
txtPubComments.ReadOnly = true;
btnPrevious.Enabled = true;
btnNext.Enabled = true;
btnAddNew.Enabled = true;
btnSave.Enabled = false;
btnCancel.Enabled = false;
btnEdit.Enabled = true;
btnDelete.Enabled = true;

btnDone.Enabled = true;
txtPubName.Focus();
break;

default: // Add or Edit if not View
txtPubID.BackColor = Color.Red;
txtPubID.ForeColor = Color.White;
txtPubName.ReadOnly = false;
txtCompanyName.ReadOnly = false;
txtPubAddress.ReadOnly = false;
txtPubCity.ReadOnly = false;
txtPubState.ReadOnly = false;
txtPubZip.ReadOnly = false;
txtPubTelephone.ReadOnly = false;
txtPubFAX.ReadOnly = false;
txtPubComments.ReadOnly = false;
btnPrevious.Enabled = false;
btnNext.Enabled = false;
btnAddNew.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
btnEdit.Enabled = false;
btnDelete.Enabled = false;
btnDone.Enabled = false;
txtPubName.Focus();
break;

}
}

2. Eliminate the txtAuthorName_KeyPress and txtYearBorn_KeyPress
event methods since these controls no longer exist. Add this
txtInput_KeyPress event method (called by all nine editable controls).
This implements the code to programmatically move from text box to
text box using the <Enter> key (as an alternate to using <Tab>):

private void txtInput_KeyPress(object sender,
KeyPressEventArgs e)
{

TextBox whichBox = (TextBox) sender;
if ((int) e.KeyChar == 13)
{

switch (whichBox.Name)
{

case "txtPubName":
txtCompanyName.Focus();
break;

case "txtCompanyName":
txtPubAddress.Focus();
break;

case "txtPubAddress":
txtPubCity.Focus();
break;

case "txtPubCity":
txtPubState.Focus();
break;

case "txtPubState":
txtPubZip.Focus();
break;

case "txtPubZip":
txtPubTelephone.Focus();
break;

case "txtPubTelephone":
txtPubFAX.Focus();
break;

case "txtPubFAX":
txtPubComments.Focus();
break;

case "txtPubComments":

txtPubName.Focus();
break;

}
}

}

3. Save and run the application. You should now be able to move from
record to record and use the other buttons to switch from state to state
(don’t click Save or Help yet). Here’s what I see for the first record
(not all fields will have values):

Perform Entry Validation
We need to eliminate any old entry validations done and add required new
ones. The only field that appears to need entry validation is Zip (it only
uses numbers and hyphens, for 9 digit zips). We won’t add any validation,
though. Why? Perhaps, in the future, the post office will develop a zip
code with letters. We want to be ready for this possibility. And, other
countries have a wide variety of zip formats. Since we are doing nothing
but displaying this value, validation is not that important. If we were doing
math with a value or using it in some other function, validation would take
on greater importance.

The old validation we need to eliminate is in the KeyPress event method
for the txtYearBorn control. That method has already been eliminated.

Perform Input Validation
Again, we need to eliminate any old input validations done and add
required new ones. All of the inputs here are generic in nature and don’t
need much validation. We will just insure a publisher Name field is
entered.

1. Modify the ValidateData method to read (just eliminate the Year Born
validation and modify the old Author Name validation a bit with the
shaded changes):

private bool ValidateData()
{

string message = "";
bool allOK = true;
// Check for name
if (txtPubName.Text.Trim().Equals(""))
{

message = "You must enter an Publisher Name." + "\r\n";
txtPubName.Focus();
allOK = false;

}
if (!allOK)
{

MessageBox.Show(message, "Validation Error",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}
return (allOK);

}

You may be asking – isn’t the PubID field important enough to be
validated? Well, yes, but being a primary key, it is treated differently. We

will see how to handle this in Chapter 6.

2. Save the application and run it. Click Edit. Blank out the Publisher
Name field and click Save. This message box should appear:

Stop the application.

Add Error Trapping and Handling
The error trapping and handling code in the old application still applies to
the new application, hence no change is needed here. This is often the case
in modifying existing applications. For other applications, you may need to
modify existing error trapping schemes or add new ones.

Add On-Line Help System
Use the HTML Help Workshop to develop a help system named
Publishers.chm.

1. In a program like FrontPage, prepare a single HTML topic file
(Publishers.htm). The topic I used is:

2. In the HTML Help Workshop, prepare a project file (Publishers.hhp).
Compile the help file (Publishers.chm). All the help files are saved in
the VCSDB\Code\Class 5\Example 5-9\HelpFile folder. Copy
Publishers.chm to our application’s Bin\Debug folder.

3. Go back to your application in Visual C#. Change the Name of the help
provider control to hlpPublishers. Make the shaded change near the

top of the frmPublishers_Load method:

private void frmPublishers_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpPublishers.HelpNamespace = Application.StartupPath

+ "\\Publishers.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
.
.
.

}

And make the shaded change to the btnHelp_Click method:

private void btnHelp_Click(object sender, EventArgs e)
{

Help.ShowHelp(this, hlpPublishers.HelpNamespace);
}

4. Save the application. Run it. Make sure both the <F1> key and Help
button bring up the help system properly:

Application Testing
If you did all the above steps carefully, the application should be running
properly. If not, make the changes required to get it running. Here’s one of
the first records I found with most of the fields:

As with the Authors form, we still need code to add the database
management functions. This is addressed in the next chapter. The final
version of this example is saved in the Example 5-9 folder in
VCSDB\Code\Class 5 folder.

Example 5-9

Using SQL Server Databases
1. The SQL Server version of the books database is SQLBooksDB.mdf.

Copy SQLBooksDB.mdf to your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. In declarations, use these objects:

SqlConnection booksConnection;
SqlCommand authorsCommand;
SqlDataAdapter authorsAdapter;

4. In frmAuthors_Load method, use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

5. In frmAuthors_Load:

Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

6
Database Management

Review and Preview
After the first five chapters, we have the ability to open databases and
obtain any virtual view (using SQL) of the data desired. We have an
abundance of tools at our disposal to help in these views. We also have the
ability to build a useful, intuitive Visual C# interface. But, we still can’t
modify the data in the database.

In this chapter, we learn the steps involved in database management. We
learn how to edit data, add data, delete data, and search a database. Using
this knowledge, we build a complete database management system for the
books database.

Database Management Tasks
As mentioned way back in Chapter 1, the tasks of a database
management system (DBMS) are really quite simple. In concept, there
are only a few things you can do with a database:

1. View the data
2. Modify (edit) the data
3. Add some data
4. Delete some data
5. Find some data of interest

At this point in our study, we’ve covered topic 1 (viewing data) in some
detail. In this section, we tackle the next three topics. The final topic
(finding data) is covered later in the chapter.

The ADO .NET engine that is part of the Visual C# environment
simplifies database management techniques significantly. We only need to
know a few object methods. Using ADO .NET and the currency manager
object, we look at how to edit, add, or delete data. As we implement these
database management techniques, we still consider proper interface design
methods and intuitive program flow.

Editing Database Records
Database editing entails the modification of one or more fields in one or
more records within a data table. This data table is formed as a result of the
ADO .NET data connection object processing some SQL statement.
Editing data is a simple task in Visual C# – there are three steps:

1. Display the record and associated fields to edit.
2. Make desired changes.
3. Save the changes.

Once Steps 1 and 2 are complete, Step 3 is automatic (if you allow it).
After editing, when you move to another record, using programmatic
navigation or through some other action, ADO .NET (via the currency
manager and data adapter) saves the changes. This automatic saving of
changes is great for basic applications, but it makes editing a little too
simple. We will be more systematic in editing records. This will save us
many headaches. The steps we will follow to edit a record are:

1. Display the record and associated fields to edit.
2. Make desired changes.
3. Validate changes.
4. Save the changes (or, optionally, cancel the edit operation).

To display the record, we use programmatic navigation or some search
technique. Once the proper record is displayed, it is automatically in edit
mode. Once in edit mode, the user can change any and all displayed fields,
using whatever Visual C# data bound control is used to represent the field.

After an edit, we need to perform proper input and entry validation to
insure all validation rules are met. ADO .NET does not provide any
specific event methods for validation. You, the programmer, need to
provide all validation code and decide where to place this code. Just make
sure validations are done before any new information is written to the
database.

In most cases, you will want to give the user the option of saving changes

and/or canceling any edits. To save edits, use the currency manager’s
EndCurrentEdit method. Assume a currency manager named
myManager, the syntax to save the current record is:

myManager.EndCurrentEdit();

This will save the values in the data bound controls tied to the currency
manager. This does not save the new values in the database (it only saves
the local data table copy).

To save changes in the database, we use the data adapter’s Update
method. If the data adapter myAdapter is connected to a data table named
myTable, the syntax to save changes is:

myAdapter.Update(myTable);

For this line of code to operate properly, it needs an ‘update command’
that is formed using:

OldDbCommandBuilder myAdapterUpdate = new
OleDbCommandBuilder(myAdapter);

This declaration is made before using the Update method (it also forms
proper delete and insert commands needed by the adapter). This save
method is usually done when an application is closed.

To cancel any changes made while editing, you use the currency
manager’s CancelCurrentEdit method. The syntax is:

myManager.CancelCurrentEdit();

After this, the data bound controls are reset to their ‘pre-edit’ values.

Phone Contact Database
For many examples in this chapter, we will use a practice database named
PhoneDB.accdb, included with the sample code (in the
VCSDB\Databases folder). This is a simple database of contacts,
containing names and phone numbers with three fields (ContactID,
ContactName, and ContactNumber) in a single table named
PhoneTable. Using this sample lets us edit, add, and delete records
without worrying about destroying something important, like the books
database.

The phone database PhoneTable table has 26 records:

ContactName and ContactName are simple string fields. ContactID is a
primary key and is auto-numbering, insuring a unique value for each
record. The ADO .NET database engine assigns the value and we will not
let the user change it.

Example 6-1

Editing Database Records
Let’s look at some of the coding and considerations used in editing
database records. We will use the phone datatabase (PhoneDB.accdb)
with its single table PhoneTable. To retrieve the fields from this table
(ordered by ContactName), we use this SQL statement:

Select * from PhoneTable ORDER BY ContactName

1. Copy PhoneDB.accdb to the same working directory as
BooksDB.accdb and NWindDB.accdb (this lets us keep a ‘clean’ copy
in the code directory). Recall the working directory we’ve been using is
c:\VCSDB\Working.

2. Start a new application. Add three labels, three text boxes, and four
buttons to the project form. The form should look something like this:

Set the following properties for each control:

Form1:
Name frmPhoneDB

FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Phone DBMS

label1:
Text ID

textBox1:
Name txtID
BackColor White

label2:
Text Name

textBox2:
Name txtName
BackColor White

label3:
Text Number

textBox3:
Name txtNumber
BackColor White

button1:
Name btnFirst
Text |<
FontStyle Bold

button2:
Name btnPrevious
Text <
FontStyle Bold

button3:
Name btnNext

Text >
FontStyle Bold

button4:
Name btnLast
Text >|
FontStyle Bold

When done, my form looks like this:

3. Add this line at the top of the code window:

using System.Data.OleDb;

4. Form level declarations to create data object:

OleDbConnection phoneConnection;
OleDbCommand phoneCommand;
OleDbDataAdapter phoneAdapter;
DataTable phoneTable;
CurrencyManager phoneManager;

5. Add this code to the frmPhoneDB_Load event method (creates data
objects and binds controls):

private void frmPhoneDB_Load(object sender, EventArgs e)

{
// connect to Phone database
phoneConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\PhoneDB.accdb");

phoneConnection.Open();
// establish command object
phoneCommand = new OleDbCommand("Select * from

phoneTable ORDER BY ContactName", phoneConnection);
// establish data adapter/data table
phoneAdapter = new OleDbDataAdapter();
phoneAdapter.SelectCommand = phoneCommand;
phoneTable = new DataTable();
phoneAdapter.Fill(phoneTable);
// bind controls to data table
txtID.DataBindings.Add("Text", phoneTable, "ContactID");
txtName.DataBindings.Add("Text", phoneTable,
"ContactName");
txtNumber.DataBindings.Add("Text", phoneTable,
"ContactNumber");
// establish currency manager
phoneManager = (CurrencyManager)

this.BindingContext[phoneTable];
}

6. Add this code to the frmPhoneDB_FormClosing event method to save
any changes to the database and close the connection:

private void frmPhoneDB_FormClosing(object sender,
FormClosingEventArgs e)
{

try
{

// save the updated phone table

OleDbCommandBuilder phoneAdapterCommands = new
OleDbCommandBuilder(phoneAdapter);

phoneAdapter.Update(phoneTable);
}
catch (Exception ex)
{

MessageBox.Show("Error saving database to file:\r\n" +
ex.Message, "Save Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
// close the connection
phoneConnection.Close();
// dispose of the objects
phoneConnection.Dispose();
phoneCommand.Dispose();
phoneAdapter.Dispose();
phoneTable.Dispose();

}

This code uses command objects (PhoneAdapterCommands) and the
data adapter Update method to save any changes to the database.

7. Lastly, add code for the four navigation buttons Click events:

private void btnFirst_Click(object sender, EventArgs e)
{

phoneManager.Position = 0;
}

private void btnPrevious_Click(object sender, EventArgs e)
{

phoneManager.Position--;
}

private void btnNext_Click(object sender, EventArgs e)

{
phoneManager.Position++;

}

private void btnLast_Click(object sender, EventArgs e)
{

phoneManager.Position = phoneManager.Count - 1;
}

8. Save the application (saved in the Example 6-1 folder in
VCSDB\VCSDB Code\Class 6 folder) and run it. Here’s the first
record:

Scroll through the records (using the navigation buttons) to become
familiar with the listings. Notice the records are sorted by name.

Go to the last record (click the >| arrow). The Name should be Zuffi,
Adam:

Change the last name to Duffi. Click to another record. Go back to the
last record and you will see the name change is reflected in the
displayed record:

If you were to stop the application at this point, the change would be
saved to the database. Change the last name back to Zuffi, and then stop
the application (click the X in the upper corner of the form).

Do you see how easy it is to edit and save a record? As we mentioned, it’s
too easy. The user may not be aware any changes are being saved. Recall,
when we discussed proper interface design, we decided that all user tasks
should be obvious and we should lead the user through these tasks. In this
example, the user should tell us when they want to edit a record and when
they want to save it. It should not be possible to change a record until the
user decides to change it. Let’s put in these modifications.

1. First, set the ReadOnly property for all text boxes to True (we will
decide when to change this to False, to allow editing). Now, add three
buttons, with these properties:

button1:
Name btnEdit
Text Edit

button2:
Name btnSave
Text Save
Enabled False

button3:
Name btnCancel
Text Cancel
Enabled False

Now, the form looks like this:

2. We’ll use the concept of application state (we often use the term mode
as a synonym for state) introduced in Chapter 5. Insert a method named
SetState with a string argument appState. Place this code in that
method:

private void SetState(string appState)
{

switch (appState)
{

case "View":
btnFirst.Enabled = true;
btnPrevious.Enabled = true;
btnNext.Enabled = true;
btnLast.Enabled = true;
btnEdit.Enabled = true;
btnSave.Enabled = false;
btnCancel.Enabled = false;
txtID.BackColor = Color.White;
txtID.ForeColor = Color.Black;
txtName.ReadOnly = true;
txtNumber.ReadOnly = true;
break;

default: // "Edit" mode
btnFirst.Enabled = false;
btnPrevious.Enabled = false;
btnNext.Enabled = false;
btnLast.Enabled = false;
btnEdit.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
txtID.BackColor = Color.Red;
txtID.ForeColor = Color.White;
txtName.ReadOnly = false;
txtNumber.ReadOnly = false;
break;

}
txtName.Focus();

}

This method has two modes: View and Edit. In View mode (default when
the form loads), we can just look at the data. In Edit mode (and later Add
mode), data can be changed, and then saved (or the edit operation
canceled). Notice we never ‘unlock’ the text box with the ID field (it is red
in Edit mode). This is a primary database key and we will not allow it to
change.

3. Add this line at the end of the frmPhoneDB_Load method to put the
form in View mode initially:

SetState("View");

This puts the form in View mode initially.

4. Place this code in the btnEdit_Click event method:

private void btnEdit_Click(object sender, EventArgs e)
{

SetState("Edit");
}

This code places the form in Edit mode and allows the data table to be
edited.

5. Place this code in the btnSave_Click event method:

private void btnSave_Click(object sender, EventArgs e)
{

phoneManager.EndCurrentEdit();
SetState("View");

}

This code saves changes in the bound controls by invoking the currency
manager EndCurrentEdit method. It resets the application state to
View mode.

6. Place this code in the btnCancel_Click event method:

private void btnCancel_Click(object sender, EventArgs e)
{

phoneManager.CancelCurrentEdit();
SetState("View");

}

This code cancels the edit operation and resets the application state to
View mode.

7. Resave the modified application. Run it. Go to the last record
(remember Zuffi, Adam?). Try to change the name – you shouldn’t be
able to since the text box is locked. Click Edit. The form is in Edit
mode:

Change the last name to Duffi. Click Cancel. Notice the Name field is
set back to Zuffi and the form is restored to viewing mode. Nothing has
changed. Click Edit again. Change the last name to Duffi. Click Save.
The form returns to viewing mode and the name change is reflected in
the displayed record. Do you see how use of this interface is clear?
Notice, though, that the records have not been re-sorted. That is, the
‘Duffi’ entry is still the last record. Stop the application.

8. Re-start the application. Go to the last record. Where’s Adam ‘Duffi’?
Scroll through the records to the ‘D’ listings – he should be there. When
we reopened the database with the original SQL command (SELECT *
FROM PhoneTable ORDER BY ContactName), the new name was
properly sorted with the other records. Change Duffi back to Zuffi (use

Edit, then Save) and stop the application. To properly sort edits at the
time they are made, we use the data table Sort method. Stop the
application and add this line of code after the ‘EndCurrentEdit’ line in
the btnSave_Click event method:

phoneTable.DefaultView.Sort = "ContactName";

Run the application. Go to the last record (Zuffi). Change Zuffi to Duffi
and click Save. The form will show the record preceding the one we
changed (Yarrow, Betty):

Move to the ‘D’ entries and you’ll see Duffi is now in the proper
location without having to stop the application). Why was the Yarrow
entry shown instead of the Duffi record? After the re-sort, the pointer is
left at the end (where it was prior to the edit). If we want to display the
Duffi record after the sort, we need to search the sorted records to see
where it was placed. We explain how to do this later in the chapter. Stop
and save the application (saved in Example 6-1 folder of
VCSDB\VCSDB Code\Class 6 folder). Before you leave this example,
run it once more and changing Mr. Zuffi’s name back.

Example 6-1

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the phone database is SQLPhoneDB.mdf.
Copy SQLPhoneDB.mdf to your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. In declarations, use these objects:

SqlConnection phoneConnection;
SqlCommand phoneCommand;
SqlDataAdapter phoneAdapter;

4. In frmPhoneDB_Load method, use this connection object:

phoneConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLPhoneDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

5. In frmPhoneDB_Load:

Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

6. In frmPhoneDB_Closing:

Change all instances of OleDbCommandBuilder to
SqlCommandBuilder

Adding Database Records
Adding a record to a database data table is closely related to the editing
process just discussed. The only difference is we are editing a new empty
record. The steps we will follow to add a new record are:

1. Add and display an empty record and associated fields.
2. Place field data in displayed controls.
3. Validate data.
4. Save the data (or, optionally, cancel the add operation).

To add a record to the data table, use the currency manager object’s
AddNew method. For a currency manager named myManager, the code
is:

myManager.AddNew();

This statement will add an empty record (all data bound controls are
blanked out) at the end of the data table. At this point, the user can enter
new values. Once new values are entered, the same validation methods
discussed for editing records must be followed.

To save the new record in the data table, use the currency manager
object’s EndCurrentEdit method:

myManager.EndCurrentEdit();

After a new record has been added and saved, the data table should be re-
sorted based on whatever criterion you choose. If a re-sort is not done, the
new record remains at the end of the data table.

If the user decides to cancel the addition of a new record, use the currency
manager CancelCurrentEdit method. For our example currency manager,
the code to do this is:

myManager.CancelCurrentEdit();

This removes the new record from the ‘editing buffer.’ We still need to do
a little extra work. Why? Prior to adding a record, the user was viewing a
particular record. We would like that same record to be displayed after the
add operation is canceled. We can do this by storing a record’s bookmark
prior to the adding a record. A bookmark is a placeholder in database
management tasks. Then, if the ‘add operation’ is canceled, we restore the
bookmark. The code to store the bookmark (the Position property of the
currency manager) is:

myBookmark = myManager.Position;

Note this requires a variable myBookmark (of type int) to save the
bookmark. To restore the bookmark, reverse the sides of the relation:

myManager.Position = myBookmark;

Example 6-2

Adding Database Records
Let’s modify the previous example (Example 6-1) to include the ability to
add records to the phone number list.

1. Add a button. Set Name to btnAdd and Text to Add New. The form
should look like this (you may want to resize the form a bit):

2. Place these lines with the form level declarations. These variables will
store the application state and any bookmark we use.

string myState;
int myBookmark;

3. Place this code in the btnAdd_Click event method:

private void btnAdd_Click(object sender, EventArgs e)
{

myBookmark = phoneManager.Position;
SetState("Add");
phoneManager.AddNew();

}

This code first sets the bookmark in case the operation is later canceled.
It then places the application in AddNew mode and adds a blank record.

4. Modify the btnCancel_Click code to differentiate between canceling
during Edit mode and Add mode (new code is shaded):

private void btnCancel_Click(object sender, EventArgs e)
{

phoneManager.CancelCurrentEdit();
if (myState.Equals("Add"))
{

phoneManager.Position = myBookmark;
}
SetState("View");

}

In this code, if in Edit mode, nothing has changed. If in Add mode, the
record addition is canceled and the saved bookmark is restored. In either
case, the user is returned to the View state. MyState is a variable
defined in the next routine.

5. Modify the SetState method so the state is saved in MyState, the new
Add state is recognized, and the enabled property of the Add New
button is properly toggled (new code is shaded):

private void SetState(string appState)
{

myState = appState;
switch (appState)
{

case "View":
btnFirst.Enabled = true;
btnPrevious.Enabled = true;
btnNext.Enabled = true;
btnLast.Enabled = true;
btnEdit.Enabled = true;

btnSave.Enabled = false;
btnCancel.Enabled = false;
btnAdd.Enabled = true;
txtID.BackColor = Color.White;
txtID.ForeColor = Color.Black;
txtName.ReadOnly = true;
txtNumber.ReadOnly = true;
break;

default: // "Edit" mode, "Add" mode
btnFirst.Enabled = false;
btnPrevious.Enabled = false;
btnNext.Enabled = false;
btnLast.Enabled = false;
btnEdit.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
btnAdd.Enabled = false;
txtID.BackColor = Color.Red;
txtID.ForeColor = Color.White;
txtName.ReadOnly = false;
txtNumber.ReadOnly = false;
break;

}
txtName.Focus();

}

6. Save the application (saved in the Example 6-2 folder in
VCSDB\VCSDB Code\Class 6 folder). Run it. Click Add New. Note
that all three textboxes (ID, Name and Number) are blank:

Recall the ContactID field is a primary key and is autonumbering.
Why, then, isn’t an ID value generated and displayed? A ‘feature’ of
ADO .NET is that it does not generate such a value until the modified
row is written back to the database (the data adapter is updated). In this
example, we don’t save the database until we end the application, so
these values will not be seen until the database is reopened.

7. Type in a name (Last Name, First Name) and a phone number. (I’m sure
that you have realized we should have some input and entry validation
for the phone number field, but we’re ignoring it for this simple
example.) Here’s my new record:

Notice there is no ID. Click Save. The application returns to View state,
displaying some other record. As mentioned earlier, we will learn how
to display the newly added record later in the chapter. Click Add New
again. Type in a new record, but this time click Cancel. The displayed
record should be the same one seen prior to clicking Add New. Users
like to see such results. Scroll through the records – the canceled record
should be nowhere to be found. The added record should still be there.

Stop the application.

8. Run the application again and find the newly added entry. The ID (132
in my example) should be there:

Stop and save the application. This lack of ID display when adding a
record is not a big problem, just an inconvenience. A user cannot edit or
modify this value in any way (it is used by the database for searching),
so there is really no reason to display it.

Example 6-2

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Deleting Database Records
Deleting a record from a database data table is simple and potentially
dangerous. Once a record is deleted, it cannot be recovered (unless you
write Visual C# code to do the job). So, be careful when you allow record
deletions. The steps we will follow to delete a record are:

1. Display the record to be deleted.
2. Make sure the user wants to delete the record (optional, but crucial).
3. Delete the record.

We want to be sure the user wants to delete a record. We suggest the use
of a message box to ask for confirmation. A suggested form for the
message box is:

The code snippet to generate this message box is:

MessageBox.Show("Are you sure you want to delete this record?",
"Delete Record", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2)

Note we make the No button default. We want the user to have to click
Yes to delete a record. If the user responds No to this box, we simply exit
the method the delete operation is in. If the response is Yes, we continue
with the deletion.

To delete a record from a data table, use the currency manager object’s
RemoveAt method. For a currency manager named myManager, the code
is:

myManager.RemoveAt(myManager.Position);

This code irrevocably deletes the displayed record (the record at
myManager.Position).

Example 6-3

Deleting Database Records
1. Let’s modify the previous example (Example 6-2) to include the ability

to delete records from the phone number list.

2. Add a button. Set Name to btnDelete and Text to Delete. The form
should look like this:

3. Place this code in the btnDelete_Click event method:

private void btnDelete_Click(object sender, EventArgs e)
{

if (MessageBox.Show("Are you sure you want to delete
this record?", "Delete Record", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2)
== DialogResult.Yes)

{
phoneManager.RemoveAt(phoneManager.Position);

}
SetState("View");

}

This code confirms the deletion using a message box. If user responds
with Yes, the deletion is done. If No, nothing happens. The application
is always returned to View mode.

4. Modify the SetState method to set the btnDelete button Enabled
property to true in View mode, false in Add/Edit mode.

5. Save the application (saved in the Example 6-3 folder in
VCSDB\VCSDB Code\Class 6 folder). Run it. Click Add New and
add your name and phone number. Click Save. Now scroll through the
records until your name is displayed. My screen shows:

Click Delete. This message box will appear:

Respond No to the message box. Your entry is still displayed. Click
Delete again, but this time respond Yes to the message box. You are
deleted from the database! Note another record is now displayed. Stop
the application.

Example 6-3

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Finding Records in a Database
There are many times in database management tasks you might like to
locate certain records in a database. As an example, in the little phone
database we’ve been using a user may want to find a particular person to
call. Or, in the books database, a user may need to find all books published
by a particular author. Or, after adding a record to and resorting a data
table, you would like to find that record and display it.

One way to find records in a database is via a SQL query. A SQL query
returns all records that match particular criteria and needs a requerying of
the database (making it slow for large databases). Such searches were
discussed in Chapter 5. In this section, we are concerned with finding a
single record in an established data table. There are two ways to
accomplish such a task. First, we will use the data table Find method.

The data table Find method will only perform searches on the column by
which the data is sorted. This is exactly what we need for the phone
database, since we sort by names and are searching by names. More
complex searches require more complex techniques (discussed next).

If we have a data table (myTable) sorted on the field mySortField and are
searching for myValue, the syntax for the Find method is:

int myRow;
myTable.DefaultView.Sort = mySortField;
myRow = myTable.DefaultView.Find(myValue);

This method returns the first row (myRow) in the data table containing the
desired field value. If now such row is found, a negative one (-1) is
returned. Setting the currency manager Position property to myRow will
properly rebind controls.

The Find method is easy to use, but limited. If we want to find a row
based on more complex criteria or based on a column other than the one
the data is sorted on, we use the data table’s Select method. The syntax is:

DataRow[] myRows;
myRows = myTable.Select(criteria);

where criteria is a Boolean expression of the search criteria. The method
returns an array of rows (myRows) containing each row in the data table
that matches the criteria.

The search criteria is a string expression like the WHERE clause in SQL.
It specifies requirements for the search. The usual form is to compare one
or more fields to a desired value. As an example, using the phone database,
if we want to find a person named Smith (ContactName field), we would
use:

criteria = “ContactName = ‘Smith’”

Note the use of single quotes around the embedded string. If you are
unsure of the complete field name, you can use the LIKE keyword with
the wildcard character (*). Say, in the above example, you are unsure if the
name you are looking for is Smith or Smyth. A search criteria to find
either is:

criteria = “ContactName LIKE ‘Sm*’”

How do you know if a search is successful? You check the length of the
returned row array. If, after a Select method, that length is greater than 0,
the search was successful. One problem with the Select method is that is
doesn’t provide corresponding row numbers within the data table (like the
Find method did). It only tells us what the rows are that match the search
criteria. To find corresponding row numbers (to allow positioning of a
currency manager), we need to do a little work. The code is not difficult,
just a bit awkward.

Assuming the returned rows array (myRows) is of non-zero length and the
default view of the data table is sorted by mySortField, the corresponding
row number for the first row in the array is:

int firstRow;
firstRow =
myTable.DefaultView.Find(myRows[0][mySortField]);

This code uses the Find method to locate the first row (firstRow) that
contains the mySortField value found in myRows[0]. As we said, it’s
awkward, but it works. After finding firstRow, you set the currency
manager’s Position property to that value to properly rebind all controls.

Example 6-4

Finding Database Records
In the phone database we have been using, we noted one drawback when
editing and adding records to the data table. After saving changes, the
currency manager does not necessarily point to the record we just edited or
added. We can now correct that drawback using the data table Find
method.

1. Open Example 6-3 (the phone database example we’ve been building).

2. Modify the btnSave_Click event method to implement a search,
following resorting of the saved data table (new code is shaded):

private void btnSave_Click(object sender, EventArgs e)
{

string savedName = txtName.Text;
int savedRow;
phoneManager.EndCurrentEdit();
phoneTable.DefaultView.Sort = "ContactName";
savedRow = phoneTable.DefaultView.Find(savedName);
phoneManager.Position = savedRow;
SetState("View");

}

When we enter this method, we have decided to save the displayed
information. Before ending the edit, we save the ContactName field
(contained in the txtName text box) in the variable savedName. After
ending the edit (saving the data table), we search for that saved name
using the Find method. The returned row (savedRow) is used to
reposition the currency manager. Notice we didn’t check to see if
savedRow is valid, since we are guaranteed a successful search. In other
searches, you would want to make sure savedRow is not -1 before
continuing.

3. Save the application (saved in the Example 6-4 folder in
VCSDB\VCSDB Code\Class 6 folder) and run it. Edit a record. Click
Save. Note the displayed record is now the newly edited record. Try the
same thing with Add New.

Example 6-4

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Modifying Records in Code
There are times you might like to change information in database records
using C# code. As an example, say you want to transfer information from
a data file to your database (we do that in the last chapter). Or, perhaps you
want to transfer information from one database into another. Or, maybe
you need to update some fields in your database. And, in an extreme case,
you might want to delete all the records in your database. All of these tasks
can be performed with C# code.

To modify a database using code, you simply determine what tasks need to
be accomplished and what code you need to accomplish those tasks. What
code do you have at your disposal? The same code you have been using
for database management tasks:

⇒ The currency manager Position property can be used to navigate
among the database records.

⇒ AddNew can be used to add a record.
⇒ RemoveAt can be used to delete a record.
⇒ EndCurrentEdit can be used to update a data table.
⇒ Find can be used to locate records.
⇒ The data adapter Update method can be used to save changes in the

database.

Write the code in the same manner you would have a user perform the
tasks. And take advantage of any code you might already have in your
application. For example, if you add a record in code and want to save it,
simply call your Save event (if it exists). As you progress in database
programming, you will find many places you want to automate database
management methods. This is exactly what modifying data in code does
for you.

There are many properties and methods that allow us to view, edit and
modify a data table without using a currency manager. One very useful
property is the data table’s Rows collection. This collection contains all
rows in the data table. The DataRow object allows us to examine (or
establish) fields in each row of the data table. To see all values of a field

(myField) in a table (myTable), you could use this code snippet:

foreach (DataRow myRow in myTable.Rows)
{

.
‘Field is available in variable myRow[myField]
.

}

In this snippet, myField is a string data type. The code uses a special form
of the for loop (foreach) that goes through all elements of the Rows
collection. Such code could be used to make bulk changes to a database.
For example, you could use it to add area codes to all your phone numbers
or change the case of particular fields. We do that in the next example.

In addition to direct editing of data rows, you can use the data row object
to add a row to a data table. To add a row to myTable, use this code:

DataRow newRow;
newRow = myTable.NewRow();

‘Add fields using
newRow[myField] = fieldValue;

‘After adding all fields add row
myTable.Rows.Add(newRow);

To delete row n from a data table (MyTable), simply use:

myTable.Rows[n].Delete();

Example 6-5

Modifying Records in Code
Notice the phone numbers in the phone database we have been using do
not have area codes listed. It is for local calls. If we want to expand our
database to allow calls outside our area code, we need to add area codes to
all the existing numbers. We could run the application and edit all records,
one at a time, adding an area code, or we could do it in code. Let’s try it.

1. Re-open Example 6-4. Add this code at the bottom of the
frmPhoneDB_Load method:

foreach (DataRow phoneRow in phoneTable.Rows)
{

phoneRow["ContactNumber"] = "(206) " +
phoneRow["ContactNumber"].ToString();
}

In this code, we go through each row in the data table (phoneTable) and
change the ContactNumber field, adding a (206) area code

2. Save (saved in the Example 6-5 folder in VCSDB\VCSDB Code\Class
6 folder) and run the application. Notice all the phone numbers now
have area codes. Here’s our old friend Adam Zuffi:

3. If desired, replace the line of code adding area codes with this one:

phoneRow["ContactNumber"] =
phoneRow["ContactNumber"].ToString().Substring(6, 8);

Run the application again. This line strips off the area codes to restore
the database to its original state. Once you are done making all the
modifications, remove the code that changes the ContactNumber. If
you don’t, you will get changes each time you run the program.

Example 6-5

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Stopping a Database Application
In all applications we have built in this class, execution can be stopped in
one of four ways:

1. Using the Visual C# toolbar End button.
2. Clicking the control box in the upper left hand corner of the form

and choosing Close.
3. Pressing Alt-<F4>.
4. Clicking the X in the upper right corner of the application form.

When others use our applications, the Visual C# End button will not be
available, the control box may or may not be visible, and all users may not
know they can use Alt-<F4> or the X button to stop. We need a way to
clearly indicate to a user how to stop an application.

The most straightforward way to stop an application is to provide a button
to click. You choose the caption. Some captions that are used in Windows
applications are Exit, Stop, Close, and Done. We will use a Text property
of Done. We will Name our button btnDone. So, all we need is code to
put in the btnDone_Click event method. The code is very simple:

private void btnDone_Click(object sender, EventArgs e)
{

this.Close();
}

How’s that for simple? One line of code stops the application. This line
tells the form to close itself (this).

With regard to application state, the Done button should be disabled
during any editing. We want to make sure our users have saved any
changes made to the database before stopping the application. This is
easily controlled using the button’s Enabled property. But there’s a
problem. We can keep the user from clicking Done at an inappropriate
time, but we can’t stop the user from using one of the three other ways to

stop the application (control box, Alt-<F4>, x). And, we can’t prevent the
user from completely shutting down the Windows operating system!
Fortunately, Visual C# provides a method that allows us to intercept any
attempt to close a form and decide if that attempt is appropriate. The
method is form’s FormClosing event.

The FormClosing method is invoked prior to closing the form. We have
been using this method to save changes to the database and close
connections. Now, we’ll add capability to insure the user can close the
form. The FormClosing method has the form:

private void MyForm_FormClosing(object sender,
FormClosingEventArgs e)
{
.
.
}

The e argument (of type FormClosingEventArgs) has two properties:
e.Cancel and e.CloseReason. If e.Cancel is false, when the method is
exited, the closing continues. If e.Cancel is true, the closing process is
canceled.

e.CloseReason tells us what invoked the closing event:

ApplicationExitCall The Exit method of the Application
class was invoked.

FormOwnerClosing The owner form is closing.
None The cause of the closure was not

defined or could not be determined.
TaskManagerClosing The Microsoft Windows Task Manager

is closing the application.
UserClosing The user is closing the form through

the user interface (UI), for example by
clicking the Close button on the form
window, selecting Close from the
window's control menu, or pressing
ALT+F4.

WindowsShutDown The operating system is closing all
applications before shutting down.

So, how do we use this event method? With regard to database
management, we simply check to see if any editing functions are in
progress. If so, we inform the user with a message box and cancel the
closing process (set e.Cancel to true). If no editing is being done, we
allow the closing to continue. That is, we do nothing. The next example
illustrates its use.

Example 6-6

Stopping a Database Application
We add stopping ability to the phone database example we have been
using.

1. Re-open Example 6-4 (the project version that doesn’t modify the phone
numbers). Add a button with a Name of btnDone and Text of Done.
The form will look like this:

2. Place this code in the btnDone_Click method:

private void btnDone_Click(object sender, EventArgs e)
{

this.Close();
}

3. Modify the SetState method to set the btnDone button Enabled
property to true in View mode, false in Add/Edit mode.

4. Add the shaded code to the frmPhoneDB_Closing method:

private void frmPhoneDB_FormClosing(object sender,
FormClosingEventArgs e)
{

if (myState.Equals("Edit") || myState.Equals("Add"))
{

MessageBox.Show("You must finish the current edit
before stopping the application.", "",
MessageBoxButtons.OK, MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save the updated phone table
OleDbCommandBuilder phoneAdapterCommands = new

OleDbCommandBuilder(phoneAdapter);
phoneAdapter.Update(phoneTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database to file:\r\n"
+ ex.Message, "Save Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
// close the connection
phoneConnection.Close();
// dispose of the objects
phoneConnection.Dispose();
phoneCommand.Dispose();
phoneAdapter.Dispose();
phoneTable.Dispose();

}
}

If the application is in Edit or Add mode, the user is editing a record

and we don’t want the application to stop. We inform the user of the
problem and cancel the closing process.

5. Save (saved in the Example 6-6 folder in VCSDB\VCSDB Code\Class
6 folder) the application and run it. Click Edit. Notice the Done button
is disabled:

Click the X in the upper right corner of the form. This should not stop
the application. This message box will appear:

Click OK to return to the database screen. Click Cancel. Now, try X
again. The application should stop. Try the other ways (including the
Done button) to stop the application, both in View mode and Edit
mode. Make sure everything works properly.

Example 6-6

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Example 6-7

Authors Table Input Form
At long last, we can use our new database management knowledge to
complete the input forms begun in Chapter 6 for the books database. In
this example, we tackle the Authors Table. In the next example, we’ll
complete the Publishers Table. We will do the modifications in stages,
testing each stage as we proceed.

Additional Navigation Capabilities
Recall, in Chapter 6, we stated that part of proper interface design was
recognizing you might have omitted needed features. And, the Visual C#
environment makes correcting these omissions a simple task. The Authors
table input form only has two navigation buttons – one to move to the
Previous record and one to move to the Next record. This may limit us.
We will add the ability to move to the beginning and end of the data table.
Adding these additional navigation capabilities is a good example of
correcting an omission.

1. Load Example 5-8 (the last version of the Authors table input form).
Add two buttons. Set these properties:

button1:
Name btnFirst
Text |< First

button2:
Name btnLast
Text Last >|

Change the btnPrevious button’s Text to < Previous and btnNext
button’s Text to Next > (remove the = signs). The form looks like this:

2. Add this code to the btnFirst_Click method:

private void btnFirst_Click(object sender, EventArgs e)
{

authorsManager.Position = 0;
}

Add this code to the btnLast_Click method:

private void btnLast_Click(object sender, EventArgs e)
{

authorsManager.Position = authorsManager.Count - 1;
}

3. Go to the SetState method. Make sure the First and Last buttons are
enabled in View mode and disabled in Add and Edit mode (the same as
the Previous and Next buttons).

4. Save the application (saved in the Example 6-7 folder in
VCSDB\Code\Class 6 folder). Run it. Your should see:

Make sure the new navigation buttons work correctly (both moving
through the records and enabling/disabling as states change).

Editing Records
We now add editing capability and the corresponding abilities to save
and/or cancel an edit.

1. Modify the btnSave_Click method to save edits and reposition the
pointer to the edited record (new lines of code are shaded):

private void btnSave_Click(object sender, EventArgs e)
{

if (!ValidateData())
{

return;
}
string savedName = txtAuthorName.Text;
int savedRow;
try
{

authorsManager.EndCurrentEdit();
authorsTable.DefaultView.Sort = "Author";
savedRow = authorsTable.DefaultView.Find(savedName);
authorsManager.Position = savedRow;
MessageBox.Show("Record saved.", "Save",

MessageBoxButtons.OK, MessageBoxIcon.Information);
SetState("View");

}
catch (Exception ex)
{

MessageBox.Show("Error saving record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

}

2. Modify the btnCancel_Click method to restore controls if edit is
canceled (new line of code is shaded):

private void btnCancel_Click(object sender, EventArgs e)
{

authorsManager.CancelCurrentEdit();
SetState("View");

}

3. Add the shaded code to frmAuthors_FormClosing method to save any
changes to the database file:

private void frmAuthors_FormClosing(object sender,
FormClosingEventArgs e)
{

try
{

// save changes to database
OleDbCommandBuilder authorsAdapterCommands = new

OleDbCommandBuilder(authorsAdapter);
authorsAdapter.Update(authorsTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database to file: \r\n"
+ ex.Message, "Save Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
// close the connection
booksConnection.Close();
// dispose of the objects
booksConnection.Dispose();
authorsCommand.Dispose();

authorsAdapter.Dispose();
authorsTable.Dispose();

}

4. Save the application. Run it. Make sure the Edit feature works – try
changing an author’s name. Make sure Cancel works properly.

Adding Records
We now implement the ability to add records to the database.

1. Add these lines in the form level declarations:

string myState;
int myBookmark;

2. Add this line of code at the top of the SetState method:

myState = appState;

3. Modify the btnAddNew_Click method to add records (new code is
shaded):

private void btnAddNew_Click(object sender, EventArgs e)
{

try
{

myBookmark = authorsManager.Position;
authorsManager.AddNew();
SetState("Add");

}
catch (Exception ex)
{

MessageBox.Show("Error adding record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

4. Modify the btnCancel_Click code to differentiate between canceling
during Edit mode and Add mode (new code is shaded):

private void btnCancel_Click(object sender, EventArgs e)
{

authorsManager.CancelCurrentEdit();
if (myState.Equals("Add"))
{

authorsManager.Position = myBookmark;
}
SetState("View");

}

5. Save the application and run it. Click Add New. Notice all text boxes
are blank (including the Author ID box; recall this primary key value
will be assigned by ADO .NET when the database is resaved). Type in
a name and year (if desired). Click Save. You should see:

Click OK and the new record should be displayed. I added myself:

Deleting Records
We now add the ability to delete records from the Authors table.

1. Modify the btnDelete_Click method to delete the record if the user
responds Yes to the message box (new code is shaded):

private void btnDelete_Click(object sender, EventArgs e)
{

DialogResult response;
response = MessageBox.Show("Are you sure you want to

delete this record?", "Delete", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2);

if (response == DialogResult.No)
{

return;
}
try
{

authorsManager.RemoveAt(authorsManager.Position);
}
catch (Exception ex)
{

MessageBox.Show("Error deleting record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

2. Save the application and run it. Make sure both the Yes and No
responses to the message box give the proper results. Only delete
records you added in testing the Add New function. If you try to delete
an original author in the table, you will see this message box when you

stop the application (from the FormClosing event):

This is preventing you from deleting an author that is used by other
tables. An author record can only be deleted if no other table uses it.
This preserves your database’s integrity.

Stopping the Application
The final modification step is to implement the correct stopping code.

1. Add the shaded code to the frmAuthors_FormClosing method to
insure we don’t close in the middle of an edit:

private void frmAuthors_FormClosing(object sender,
FormClosingEventArgs e)
{

if (myState.Equals("Edit") || myState.Equals("Add"))
{

MessageBox.Show("You must finish the current edit
before stopping the application.", "",
MessageBoxButtons.OK, MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save changes to database
OleDbCommandBuilder authorsAdapterCommands =
new

OleDbCommandBuilder(authorsAdapter);
authorsAdapter.Update(authorsTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database to file:
\r\n" + ex.Message, "Save Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);
}
// close the connection
booksConnection.Close();
// dispose of the objects
booksConnection.Dispose();
authorsCommand.Dispose();
authorsAdapter.Dispose();
authorsTable.Dispose();

}
}

2. Place this code in the btnDone_Click method:

private void btnDone_Click(object sender, EventArgs e)
{

this.Close();
}

3. Save the application and run it. Make sure the Done button works
properly. Make sure you can’t exit the application while in Edit or Add
mode. Make sure all functions work properly.

The Authors Table Input Form application is now complete (final version
is saved in the Example 6-7 folder in VCSDB\Code\Class 6 folder).
Hopefully, you see the great advantage in using the Visual C# interface to
build and test an application. The event-driven nature allows building of
the interface in stages. This greatly simplifies testing and debugging of the
application. We will use this form as part of a complete books database
management system in the final example of this chapter.

Example 6-7

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. Use the SQL Server version of Example 5-8.

2. In frmAuthors_FormClosing:

Change all instances of OleDbCommandBuilder to
SqlCommandBuilder

Example 6-8

Publishers Table Input Form
We now add database management capabilities to the Publishers Table
Input Form developed in Example 5-9 in Chapter 5. This table, in
conjunction with the Authors Table Input Form just completed, will be
part of a complete books database management system. You will notice
the steps are essentially identical to those followed for the Authors table.

Additional Navigation Capabilities
We add the ability to move to the beginning and end of the data table.

1. Open Example 5-9 (the Publishers table input form). Add two buttons.
Set these properties:

button1:
Name btnFirst
Text |< First

button2:
Name btnLast
Text Last >|

Change the btnPrevious button’s Text to < Previous and btnNext
button’s Text to Next > (we just eliminated the = signs). The form looks
like this:

2. Add this code to the btnFirst_Click method:

private void btnFirst_Click(object sender, EventArgs e)
{

publishersManager.Position = 0;
}

Add this code to the btnLast_Click method:

private void btnLast_Click(object sender, EventArgs e)
{

publishersManager.Position = publishersManager.Count - 1;
}

3. Go to the SetState method. Make sure the First and Last buttons are
enabled in View mode and disabled in Add and Edit mode (the same as
the Previous and Next buttons).

4. Save the application (saved in the Example 6-8 folder in the
VCSDB\Code\Class 6 folder). Run it. You should see:

Make sure the new navigation buttons work correctly (both moving
through the records and enabling/disabling as states change).

Editing Records
We now add editing capability and the corresponding abilities to save
and/or cancel an edit.

1. Modify the btnSave_Click method to save edit and reposition pointer to
the edited record (new lines of code are shaded):

private void btnSave_Click(object sender, EventArgs e)
{

if (!ValidateData())
{

return;
}
string savedName = txtPubName.Text;
int savedRow;
try
{

publishersManager.EndCurrentEdit();
publishersTable.DefaultView.Sort = "Name";
savedRow =

publishersTable.DefaultView.Find(savedName);
publishersManager.Position = savedRow;
MessageBox.Show("Record saved.", "Save",

MessageBoxButtons.OK, MessageBoxIcon.Information);
SetState("View");

}
catch (Exception ex)
{

MessageBox.Show("Error saving record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

2. Modify the btnCancel_Click method to restore controls if edit is
canceled (new line of code is italicized):

private void btnCancel_Click(object sender, EventArgs e)
{

publishersManager.CancelCurrentEdit();
SetState("View");

}

3. Add the shaded code to the frmPublishers_FormClosing method to
save any changes to the database file:

private void frmPublishers_FormClosing(object sender,
FormClosingEventArgs e)
{

try
{

// save changes to database
OleDbCommandBuilder publishersAdapterCommands =
new

OleDbCommandBuilder(publishersAdapter);
publishersAdapter.Update(publishersTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database to file: \r\n"
+ ex.Message, "Save Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
// close the connection
booksConnection.Close();
// dispose of the objects

booksConnection.Dispose();
publishersCommand.Dispose();
publishersAdapter.Dispose();
publishersTable.Dispose();

}

4. Save the application. Run it. Make sure the Edit feature works – try
changing a publisher’s name. Make sure Cancel works properly.

Adding Records
We now implement the ability to add records to the database.

1. Add these lines in the form level declarations:

string myState;
int myBookmark;

2. Add this line of code at the top of the SetState method:

myState = appState;

3. Modify the btnAddNew_Click method to add records (new code is
shaded):

private void btnAddNew_Click(object sender, EventArgs e)
{

try
{

myBookmark = publishersManager.Position;
publishersManager.AddNew();
SetState("Add");

}
catch (Exception ex)
{

MessageBox.Show("Error adding record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

4. Modify the btnCancel_Click code to differentiate between canceling
during Edit mode and Add mode (new code is shaded):

private void btnCancel_Click(object sender, EventArgs e)
{

publishersManager.CancelCurrentEdit();
if (myState.Equals("Add"))
{

publishersManager.Position = myBookmark;
}
SetState("View");

}

5. Save the application and run it. Click Add New. Again, all the text
boxes are blank. The Publisher ID (a non-editable primary key) will be
assigned once the database file is saved. Type in some information (add
at least a Name value). Click Save and you will see:

Click OK and the new record will be displayed. I added my company
(KIDware):

Deleting Records
We now add the ability to delete records from the Publishers table.

1. Modify the btnDelete_Click method to delete the record if the user
responds Yes to the message box (new code is shaded):

private void btnDelete_Click(object sender, EventArgs e)
{

DialogResult response;
response = MessageBox.Show("Are you sure you want to

delete this record?", "Delete", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2);

if (response == DialogResult.No)
{

return;
}
try
{

publishersManager.RemoveAt(publishersManager.Position);
}
catch (Exception ex)
{

MessageBox.Show("Error deleting record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

2. Save the application and run it. Make sure both the Yes and No
responses to the message box give the proper results. Delete a record.
Only delete records you added in testing the Add New function. If you

try to delete an original publisher in the table, you will see this message
box when you stop the application (from the FormClosing event):

You cannot delete publishers that are used by other tables. This would
destroy the integrity of your database.

Stopping the Application
The final modification step is to implement the correct stopping code.

1. Add the shaded code to the frmPublishers_FormClosing method to
insure we don’t close in the middle of an edit:

private void frmPublishers_FormClosing(object sender,
FormClosingEventArgs e)
{

if (myState.Equals("Edit") || myState.Equals("Add"))
{

MessageBox.Show("You must finish the current edit
before stopping the application.", "",
MessageBoxButtons.OK, MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save changes to database
OleDbCommandBuilder publishersAdapterCommands =
new

OleDbCommandBuilder(publishersAdapter);
publishersAdapter.Update(publishersTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database to file:
\r\n" + ex.Message, "Save Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);
}
// close the connection
booksConnection.Close();
// dispose of the objects
booksConnection.Dispose();
publishersCommand.Dispose();
publishersAdapter.Dispose();
publishersTable.Dispose();

}
}

2. Place this code in the btnDone_Click method:

private void btnDone_Click(object sender, EventArgs e)
{

this.Close();
}

3. Save the application and run it. Make sure the Done button works
properly. Make sure you can’t exit the application while in Edit or Add
mode. Make sure all functions work properly.

The Publishers Table Input Form application is now complete (final
version is saved in the Example 6-8 folder in VCSDB\Code\Class 6
folder). We will use this form as part of a complete books database
management system in the final example of this chapter.

Example 6-8

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. Use the SQL Server version of Example 5-9.

2. In frmPublishers_FormClosing:

Change all instances of OleDbCommandBuilder to
SqlCommandBuilder

Multiple Table Database
Management
We have seen that adding database management capabilities to a single
data table form is a straightforward process. There are certain methods for
editing, adding, and deleting records. And, the ADO .NET database engine
makes implementing these methods a simple task. Most databases,
however, contain multiple tables within a single file. New complications
arise when adding database management capabilities to these relational
databases. Some things you need to do are:

∘ Display information from multiple tables on a single form
∘ Use a selected record to change information in another table or form
∘ Coordinate saving updates to many tables
∘ Handle more than one data adapter
∘ Provide access to other editing forms

In this section, we provide some general rules for attacking multiple table
database management. The most important rule to follow in multiple table
database management is the same rule followed with single tables.
Understand your database application and what you are trying to do. Plan
ahead. Be systematic in your application development. Understand how
changes in one table may affect other tables. Use the Visual C#
environment to your advantage. Do your development in stages and test
each stage as your proceed. Try your ideas until things work like you want
them to. You’ll do lots of iterating on ideas you may have. Make sure the
use of your application is obvious and intuitive to the user. As we said,
these are the same rules followed with single tables. There are just more
things to consider with multiple tables.

Database Keys
Recall keys connect tables in a relational database. Primary keys are
unique one-to-one identifiers. Foreign keys are many-to-one identifiers
used in various tables to point back to database information. You need to
know which fields in your database are keys and whether they are primary
or foreign. In our single table examples (the Authors table and Publishers
table for the books database), we did not let the user modify the primary
key (Au_ID and PubID) fields. These are numbers automatically assigned
by the ADO .NET engine (auto-incrementing) to insure unique values. We
continue that restriction here – the user will not be allowed to edit primary
keys. In multiple table databases, the user will have the option to change
foreign keys. This is acceptable.

Extra care concerning keys must be taken when deleting records in
multiple table situation. If you delete a record (with a primary key) that
foreign key entries in other records need, those ‘foreign’ records would
lose the information provided by the deleted record. These are called
orphan records – they are incomplete. This compromises the integrity of
your database – not a good thing. For example, in the books database, if
you delete a Publisher entry, all books in the Titles table using that
publisher will no longer have access to the publisher’s information. Before
you delete a record with a primary key, make sure no other records rely on
the information needed by the ‘about to be deleted’ record. Fortunately,
the ADO .NET engine helps you avoid orphans by not allowing data
adapter updates (saving back to the original database) if needed primary
key entries are deleted. We saw this with error message received in the
Authors and Publishers table examples.

You may occasionally have ‘primary records’ not referred to by any
‘foreign record’. That’s acceptable; there is no loss of integrity in this case.
The database just has an extra entry that may be used at some time.

Database Modifications
Since we are working with many database tables (and, hence, many data
tables) at a time, we must always be aware of how changes in one
particular data table may affect other data tables. This is where the power
of the ADO .NET database engine can help or may come back to haunt
you. As an example using the books database (and we’ll see this in the
next example), say you form a data table (using SQL) displaying book
titles and publisher names (connecting two tables using PubID). If you
change a publisher’s name in that data table, the ADO .NET database
engine will write that change in the Publishers table for every entry with
the same PubID. Every book in the database with that particular publisher
will be connected with the new publisher name. You may change
thousands of records with one little entry! This is good if you really want
to change the publisher name, but dangerous if it was an inadvertent
change. So, as we said, be careful and systematic in building your interface
with multiple tables.

There are also cases where you may have to coordinate changes among
various database tables using C# code. This arises if you use controls that
are not data bound or if you can’t form a complete updateable data table
using SQL. An example with the books database (Example 6-9) is related
to the fact that there may be multiple authors for a particular book. We
would like to display, edit, and update all authors in our data table. This
cannot be done solely with SQL; we must also use code. There are no
general rules for coordinating table modifications – every case is different.
Just decide what you need to do and try to do it. If it works, great! If not,
try again, using the Visual C# environment as your virtual test bench.

Final Application
The final application in this chapter will illustrate many of the operations
just outlined for multiple table database management. This final
application completes our books database application by incorporating the
Titles and Title_Author table to tie everything together. It will make use
of the Authors and Publishers forms built in earlier examples. Pay close
attention to the steps followed to attack the application. You will encounter
similar problems and operations in database applications you build in the
future.

Be aware this is not the only possible way to incorporate the books
database tables into a management system. We have our ways of doing
things and you will develop your own ways. All programmers have their
styles. Feel free to modify this example to fit your style.

Example 6-9

Books Database Management System
In previous examples in this chapter, we have developed Visual C# forms
(interfaces) that allow management of the Authors and Publishers tables
in the books database. To complete this database management system, we
need a form (it will rely on the Authors and Publishers forms) to allow a
user to edit, add, and delete information about individual book titles. This
involves using multiple tables (not only the Authors and Publishers
tables, but also the Titles and Title_Author tables). We develop that final
form in this example.

This is not a simple project. As such, we will proceed in stages checking
our work as we go. This is very typical of the process followed in building
complicated Visual C# projects. As we proceed, we will try to explain not
only what we are doing, but also why we are doing it. We believe you will
find this pedagogical approach is of benefit to you, the student trying to
learn database management techniques.

As an aid in developing this database management system, we repeat a
diagram first viewed in Chapter 2 that illustrates the four tables of the
books database:

This table shows the fields for each table and how the database keys

connect the tables. Referring to this table throughout this example will
help you understand the steps we take.

Basic Book Titles Input Form
We begin by constructing and testing a basic input form for book titles.
What information would we want to input about a book? Such basic
information as title, date of publication, author, and publisher would be a
start. Much of this information can be gleaned from the books database
Titles table. Recall this is a table we haven’t dealt with yet in building our
application. This table has eight fields:

Title
Year_Published
ISBN
PubID
Description
Notes
Subject
Comments

The SQL statement needed by the command object to retrieve the fields
(sorted by the Title field) is:

SELECT * FROM Titles ORDER BY Title

If this field’s list had the author’s name(s) and publisher name, it would be
a complete list for an input form. But, it doesn’t.

How do we get the author and publisher? We could use SQL to form a
virtual view of the data using all of the tables in the books database. The
PubID field, in conjunction with the Publishers table, will give us the
Publisher’s name. The ISBN field, in conjunction with the Title_Author
table (another one we haven’t used yet) and the Authors table, can provide
author information. We will ignore these omissions for now and just build
a basic input form for the information in the Titles table. This will be a
good first step.

Recall how (in Example 5-9) we built the Publishers input form by
modifying the Authors input form, rather than starting from scratch. We’ll
follow that same approach here. We’ll take a copy of the Publishers input
form application and modify it to become the new Titles input form.
You’ll see how quick and easy such a modification is.

1. Make a copy of the Example 6-8 project folder (our final version of the
Publishers input form). Rename the copied folder something else (I
used Example 6-9). Open this resaved project. Rename the single form
in the project TitleForm.cs. We now have a renamed copy of the
Publishers input form to modify. Our first iteration on the Titles form
will allow the input of seven fields:

Title, Year_Published, ISBN, Description, Notes, Subject,
Comments

We have purposely not included PubID in this list. We will add it when
we discuss obtaining a Publisher name in the next section of this
example.

2. Open the form. Delete the label and text box controls for Telephone,
FAX, and Comments. Change these properties on the existing form
labels and text box controls:

frmPublishers (current name):
Name frmTitles
Text Titles

Label1 (current name):
Text Title

txtPubID (current name):
Name txtTitle
TabIndex 0
TabStop True

Label2 (current name):
Text Title

txtPubName (current name):
Name txtYear
TabIndex 1
TabStop True

Label3 (current name):
Text ISBN

txtCompanyName (current name):
Name txtISBN
TabIndex 2
TabStop True

Label4 (current name):
Text Description

txtPubAddress (current name):
Name txt Description
TabIndex 3
TabStop True

Label5 (current name):
Text Notes

txtPubCity (current name):
Name txtNotes
TabIndex 4
TabStop True

Label6 (current name):
Text Subject

txtPubState (current name):
Name txtSubject
TabIndex 5
TabStop True

Label7 (current name):
Text Comments

txtPubZip (current name):
Name txtComments
TabIndex 6
TabStop True

3. Move the controls around and resize the form until it looks something
like this:

I’ve moved the buttons at the bottom of the form too. We’re saving
space to add author and publisher information and a search capability at
a later time.

4. We rename the data objects to reflect the Titles table. Make the shaded
changes to the form level declarations:

OleDbConnection booksConnection;

OleDbCommand titlesCommand;
OleDbDataAdapter titlesAdapter;
DataTable titlesTable;
CurrencyManager titlesManager;
string myState;
int myBookmark;

5. Make the shaded changes to the form Load event method (you will have
to reassign this method to the Load event):

private void frmTitles_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpPublishers.HelpNamespace = Application.StartupPath

+ "\\publishers.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
// establish command object
titlesCommand = new OleDbCommand("SELECT * FROM
Titles

ORDER BY Title", booksConnection);
// establish data adapter/data table
titlesAdapter = new OleDbDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
// bind controls to data table
txtTitle.DataBindings.Add("Text", titlesTable, "Title");
txtYear.DataBindings.Add("Text", titlesTable,

"Year_Published");
txtISBN.DataBindings.Add("Text", titlesTable, "ISBN");
txtDescription.DataBindings.Add("Text", titlesTable,
"Description");
txtNotes.DataBindings.Add("Text", titlesTable, "Notes");
txtSubject.DataBindings.Add("Text", titlesTable,
"Subject");
txtComments.DataBindings.Add("Text", titlesTable,
"Comments");
// establish currency manager
titlesManager =

(CurrencyManager)this.BindingContext[titlesTable];
}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error establishing Titles
table.", MessageBoxButtons.OK, MessageBoxIcon.Error);

return;
}
this.Show();
SetState("View");

}

These changes reflect the new data object naming, the new SQL
command string and the proper data binding for the text box controls.
Yes, we know we’re still pointing to the Publishers help system – we’ll
fix this later.

6. Make similar changes to the form FormClosing method (you will have
to reassign this method to the Load event):

private void frmTitles_FormClosing(object sender,
FormClosingEventArgs e)
{

if (myState.Equals("Edit") || myState.Equals("Add"))

{
MessageBox.Show("You must finish the current edit

before stopping the application.", "", MessageBoxButtons.OK,
MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save changes to database
OleDbCommandBuilder titlesAdapterCommands = new

OleDbCommandBuilder(titlesAdapter);
titlesAdapter.Update(titlesTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database to file:
\r\n" + ex.Message, "Save Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
// close the connection
booksConnection.Close();
// dispose of the objects
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();

}
}

7. Make the shaded changes to the four methods for navigation:

private void btnFirst_Click(object sender, EventArgs e)

{
titlesManager.Position = 0;

}

private void btnPrevious_Click(object sender, EventArgs e)
{

if (titlesManager.Position == 0)
{

Console.Beep();
}
titlesManager.Position--;

}

private void btnNext_Click(object sender, EventArgs e)
{

if (titlesManager.Position == titlesManager.Count - 1)
{

Console.Beep();
}
titlesManager.Position++;

}

private void btnLast_Click(object sender, EventArgs e)
{

titlesManager.Position = titlesManager.Count - 1;
}

8. Eliminate code in the txtInput_KeyPress event (for now). We’ll add
code here when we’re further along in the application development.

9. Change the ValidateData function to just three lines of code (for now):

private bool ValidateData()
{

string message = "";

bool allOK = true;
return (allOK);

}

10. Modify the SetState method (new code is shaded):

private void SetState(string appState)
{

myState = appState;
switch (appState)
{

case "View":
txtTitle.ReadOnly = true;
txtYear.ReadOnly = true;
txtISBN.ReadOnly = true;
txtISBN.BackColor = Color.White;
txtISBN.ForeColor = Color.Black;
txtDescription.ReadOnly = true;
txtNotes.ReadOnly = true;
txtSubject.ReadOnly = true;
txtComments.ReadOnly = true;
btnFirst.Enabled = true;
btnPrevious.Enabled = true;
btnNext.Enabled = true;
btnLast.Enabled = true;
btnAddNew.Enabled = true;
btnSave.Enabled = false;
btnCancel.Enabled = false;
btnEdit.Enabled = true;
btnDelete.Enabled = true;
btnDone.Enabled = true;
txtTitle.Focus();
break;

default: // Add or Edit if not View
txtTitle.ReadOnly = false;
txtYear.ReadOnly = false;
txtISBN.ReadOnly = false;
if (myState.Equals("Edit"))
{

txtISBN.BackColor = Color.Red;
txtISBN.ForeColor = Color.White;
txtISBN.ReadOnly = true;
txtISBN.TabStop = false;

}
else
{

txtISBN.TabStop = true;
}
txtDescription.ReadOnly = false;
txtNotes.ReadOnly = false;
txtSubject.ReadOnly = false;
txtComments.ReadOnly = false;
btnFirst.Enabled = false;
btnPrevious.Enabled = false;
btnNext.Enabled = false;
btnLast.Enabled = false;
btnAddNew.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
btnEdit.Enabled = false;
btnDelete.Enabled = false;
btnDone.Enabled = false;
txtTitle.Focus();
break;

}
}

This code reflects the new names on the text boxes. Also, we set
ReadOnly to true for the txtISBN control Edit mode (and change it to
red). This is the box where ISBN (a primary key identifying a book) is
entered. Recall we will not allow editing of primary keys. We only want
to enter a value here in Add mode.

11. Make the shaded changes to the btnAddNew_Click, btnDelete_Click
and btnCancel_Click methods to reflect data object names:

private void btnAddNew_Click(object sender, EventArgs e)
{

try
{

myBookmark = titlesManager.Position;
titlesManager.AddNew();
SetState("Add");

}
catch (Exception ex)
{

MessageBox.Show("Error adding record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

private void btnDelete_Click(object sender, EventArgs e)
{

DialogResult response;
response = MessageBox.Show("Are you sure you want to

delete this record?", "Delete", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2);

if (response == DialogResult.No)
{

return;
}
try

{
titlesManager.RemoveAt(titlesManager.Position);

}
catch (Exception ex)
{

MessageBox.Show("Error deleting record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

private void btnCancel_Click(object sender, EventArgs e)
{

titlesManager.CancelCurrentEdit();
if (myState.Equals("Add"))
{

titlesManager.Position = myBookmark;
}
SetState("View");

}

12. Modify the btnSave_Click event method to reflect the new data
objects and search the Titles table for the new record (we search on the
first field, Title) following a save (new code is shaded):

private void btnSave_Click(object sender, EventArgs e)
{

if (!ValidateData())
{

return;
}
string savedName = txtTitle.Text;
int savedRow;
try
{

titlesManager.EndCurrentEdit();
titlesTable.DefaultView.Sort = "Title";
savedRow = titlesTable.DefaultView.Find(savedName);
titlesManager.Position = savedRow;
MessageBox.Show("Record saved.", "Save",

MessageBoxButtons.OK, MessageBoxIcon.Information);
SetState("View");

}
catch (Exception ex)
{

MessageBox.Show("Error saving record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

13. Save the application (saved in the Example 6-9 folder in the
VCSDB\Code\Class 6 folder). Run it. You should see this form:

Scroll through the records using the navigation buttons. Try editing a
record (make sure both the Save and Cancel functions work).

Try adding a record. Type a title and click Save. Then exit the application.
You should see this error message:

This is our error trapping code telling us the new record can’t be saved to
the database because we haven’t supplied a valid Publisher ID. We’ll fix
this soon.

Finding Records
The Titles table has over 8,500 entries. If we wanted to edit an entry that
began with the letter ‘N’, we would need to use the Next arrow about
4,000 times before we found the desired record! This is not acceptable. We
need a faster way to locate records. We will add the ability to search for
book titles that begin with certain letters. This will let a user get close to a
title they might be looking for. And, while we are at it, we will add the
ability to display the number of records in our data table. Users like to
know how many records they are working with.

1. Add a group box at the lower left corner of the Titles input form. Place
a label, a text box and button in the group box. Set these properties:

groupBox1:
Name grpFindTitle
Text Find Title

label1:
AutoSize False
Text Type first few letters of Title
TextAlign TopCenter

text1:
Name txtFind
TabStop False

button1:
Name btnFind
Text Find
TabStop False

When done, the modified form should look like this:

2. In the SetState method, enable the Find Title group box in View mode,
disable it in Add and Edit mode. Use the grpFindTitle Enabled
property.

3. Add this code to the btnFind_Click event method:

private void btnFind_Click(object sender, EventArgs e)
{

if (txtFind.Text.Equals(""))
{

return;
}
int savedRow = titlesManager.Position;
DataRow[] foundRows;
titlesTable.DefaultView.Sort = "Title";
foundRows = titlesTable.Select("Title LIKE '" +

txtFind.Text + "*'");
if (foundRows.Length == 0)

{
titlesManager.Position = savedRow;

}
else
{

titlesManager.Position =
titlesTable.DefaultView.Find(foundRows[0]["Title"]);

}
}

This routine first saves the position of the currency manager. It then
uses the Select method of the data table to find all rows with a Title
field LIKE the input letter(s) (we append the wild card character, *). If
the search is not successful, the saved position is restored.

4. Save the application and run it. Type N in text box of the Find Title
group box. Click Find. You should see the first N title:

Try other searches. Notice what happens when a search is not

successful. Stop the application.

Navigation Information
We’ll now add code to keep track of and display which record you are
viewing and the total number of records in the Titles data table.

1. Add a general method named SetText to your application. Use this
code:

private void SetText()
{

this.Text = "Titles - Record " + (titlesManager.Position
+ 1).ToString() + " of " + titlesManager.Count.ToString()
+ " Records";
}

This sets the form Text property to reflect the current record (Position)
and the total number of records (Count).

2. Add this single line of code at the bottom of the frmTitles_Load to
initialize the display of the number of records:

SetText();

3. When we move to a new record, the currency manager position changes
so we need to update the title bar information. Add this line of code at
the end of the btnFind_Click, btnFirst_Click, btnPrevious_Click,
btnNext_Click and btnLast_Click event methods:

SetText();

4. When we add, save or delete a record, the number of records and current
position may change. Also, if we cancel adding a record, there will be
changes. Add this line of code at the end of the btnAddNew_Click,
btnSave_Click, btnCancel_Click and btnDelete_Click event methods
to reflect this change:

SetText();

5. Save the application. Run it. Note navigation information is now
displayed in the form’s title bar area:

Later, when we add publisher and author information, we can see how
adding records and deleting records changes the number of records.

Adding Publisher Name
Earlier, when we tried to add and save a record to the Titles table, we
received an error message stating no PubID field was supplied. We will
correct that problem now. As indicated, each title in the books database
requires a PubID (or Publisher identification) number. This is a foreign
key related to the primary key in the Publishers table. This key tells us
who the publisher of the book is.

For existing records, the PubID value is known and can be changed, since
it is a foreign key. For added records, the user must supply a value. But,
how does a user know the PubID value for a book’s publisher? He or she
probably doesn’t. But, the user should know the name of the publisher.
Rather than ask the user to supply a PubID, it would be preferable to have
the user supply the name of the publisher and let the database engine
supply the corresponding PubID. Similary, when a user navigates to an
existing record, we would prefer to see the publisher name rather than the
corresponding PubID value.

Can we do this? Of course. Recall this is just what the combo box, studied
in Chapter 5, can do for us. Go back and review that material. The basic
idea is that we use the Name field of the Publishers table to fill the list
portion of the combo box. When the user picks a name, we want the
combo box to pass the corresponding PubID to the Titles table. Then,
when a user navigates to a record, we want the corresponding PubID sent
to the combo box to display the corresponding publisher name. Let’s try it.

1. Add another label control and a combo box to the Titles input form. The
form should look like this:

2. The new controls have these properties:

label1:
Text Publisher

comboBox1:
Name cboPublisher
BackColor White (changed so we can see values when

Enabled is false)
DropDownStyle DropdownList

3. Add these lines in the form level declarations:

OleDbCommand publishersCommand;
OleDbDataAdapter publishersAdapter;
DataTable publishersTable;

These are the objects we will use to populate the combo box with

publishers.

4. Add the shaded code to the frmTitles_Load method to establish the
proper binding of the combo box:

private void frmTitles_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpPublishers.HelpNamespace = Application.StartupPath +
"\\publishers.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
// establish command object
titlesCommand = new OleDbCommand("SELECT * FROM
Titles

ORDER BY Title", booksConnection);
// establish data adapter/data table
titlesAdapter = new OleDbDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
// bind controls to data table
txtTitle.DataBindings.Add("Text", titlesTable, "Title");
txtYear.DataBindings.Add("Text", titlesTable,
"Year_Published");
txtISBN.DataBindings.Add("Text", titlesTable, "ISBN");
txtDescription.DataBindings.Add("Text", titlesTable,
"Description");
txtNotes.DataBindings.Add("Text", titlesTable, "Notes");
txtSubject.DataBindings.Add("Text", titlesTable,

"Subject");
txtComments.DataBindings.Add("Text", titlesTable,
"Comments");
// establish currency manager
titlesManager =

(CurrencyManager)this.BindingContext[titlesTable];
// establish publisher table/combo box to pick publisher
publishersCommand = new OleDbCommand("Select * from
Publishers ORDER BY Name", booksConnection);
publishersAdapter = new OleDbDataAdapter();
publishersAdapter.SelectCommand = publishersCommand;
publishersTable = new DataTable();
publishersAdapter.Fill(publishersTable);
cboPublisher.DataSource = publishersTable;
cboPublisher.DisplayMember = "Name";
cboPublisher.ValueMember = "PubID";
cboPublisher.DataBindings.Add("SelectedValue",
titlesTable, "PubID");

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error establishing Titles
table.", MessageBoxButtons.OK, MessageBoxIcon.Error);

return;
}
this.Show();
SetState("View");
SetText();

}

Let’s review what we did here in the added code. The first few lines are
used to get a publishersTable object (the Publishers table in the books
database) to bind the combo box to (DataSource property). These
should be familiar steps by now. The drop-down list portion of the

combo box will display the Name field (DisplayMember property)
from the Publisher table. The displayed names in the combo box
correspond to the PubID field (ValueMember property). The last line
in the added code is the key to everything:

cboPublisher.DataBindings.Add("SelectedValue",
titlesTable, "PubID");

This statement binds the SelectedValue property of the combo box
(which holds the value of the PubID) to the PubID field in the
titlesTable object. This insures that when a title is displayed, the proper
publisher is displayed and when the user picks a publisher name, the
Titles table will get the proper PubID value.

5. Add the shaded lines to the frmTitles_Closing event method to dispose
of the newly added objects:

private void frmTitles_FormClosing(object sender,
FormClosingEventArgs e)
{

if (myState.Equals("Edit") || myState.Equals("Add"))
{

MessageBox.Show("You must finish the current edit
before stopping the application.", "",
MessageBoxButtons.OK, MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save changes to database
OleDbCommandBuilder titlesAdapterCommands = new

OleDbCommandBuilder(titlesAdapter);
titlesAdapter.Update(titlesTable);

}

catch (Exception ex)
{

MessageBox.Show("Error saving database to file:
\r\n" + ex.Message, "Save Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
// close the connection
booksConnection.Close();
// dispose of the objects
booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();
titlesTable.Dispose();
publishersCommand.Dispose();
publishersAdapter.Dispose();
publishersTable.Dispose();

}
}

6. Modify the SetState method so the combo box is disabled in View
mode and enabled in Add and Edit modes.

7. Save the application and run it. You should now see a Publisher listed
(it is ‘grayed out’ since it can’t be edited in View mode):

Scroll through the records and notice how the combo box properly
displays the publisher name. Click the drop-down arrow in the combo
box and notice that the displayed name is highlighted (selected) among
the order choices. Press <Esc> to make the drop-down box go away.

8. Let’s try changing a publisher. Write down the name of the publisher for
the displayed record. Click Edit. Click the drop-down arrow for the
combo box. (When the drop-down box is displayed, you can press the
first letter of the name, if you know it, for faster navigation among the
names. This only works in Edit mode, the list is disabled in View
mode.) Click on a new publisher. Click Save. Your book now has a
new publisher – it’s that easy. Change the name back to the correct one.
You should make sure the Cancel option operates correctly too.

9. Let’s try adding a title (including publisher) to the database. Click Add
New. Type in a Title and select a Publisher. Click Save. Close the
application, trying to write the changes back to the database. Did this
show up?

The primary key it is referring to is the ISBN field. This is the primary
key identifying every title in the Titles table. We must supply a value.
Start the application again. Click Add New. Type in some value for
ISBN (don’t worry what it is). Click Save. Your new book has been
added to the database. Notice, too, that the number of records (in the
title bar) has increased by one. Delete the book you just added. Use the
Find Title feature, if needed. Stop the application

Adding Publisher Editing
What if the user can’t find the publisher they want in the drop-down list?
This could often happen when adding new titles to the database. If the
desired publisher name is not in the list, we need to either edit a current
entry or add a new entry to the Publishers table. Once the new publisher
name is in the Publishers table, it will be available for use in the Titles
input form. And, guess what? We’ve already built the form that lets us edit
the Publishers table in Example 6-8.

1. Add the form built in Example 6-8 to the current project. To do this,
click the Project Menu item and choose Add Existing Item. This
dialog should appear:

As shown, navigate to the Example 6-8 project folder (you may have
named it something else) and select the cs file (not the Designer.cs file)
in that folder. Click Add.

The file will appear in the Solution Explorer window as part of the
project:

Rename this form PublisherForm.cs.

2. In the PublisherForm.cs and PublisherForm.Designer.cs files, change
namespace Example_6_8 to namespace Example_6_9. This allows
us to properly reference this file.

3. On the Titles input form, add a button to the left of the Help button.
Give it a Name property of btnPublishers and a Text property of
&Publishers. Add this code to the btnPublishers_Click event:

private void btnPublishers_Click(object sender, EventArgs e)
{

frmPublishers pubForm = new frmPublishers();
string pubSave = cboPublisher.Text;
pubForm.ShowDialog();
pubForm.Dispose();
// need to regenerate publishers data
booksConnection.Close();
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
publishersAdapter.SelectCommand = publishersCommand;
publishersTable = new DataTable();
publishersAdapter.Fill(publishersTable);

cboPublisher.DataSource = publishersTable;
cboPublisher.Text = pubSave;

}

This code displays the Publishers input form to allow any editing
necessary. Before displaying the form, the current publisher choice is
saved (pubSave). When the Titles form becomes active again, there
may be new values in the database (from editing the Publishers table).
To see these changes, we close our connection to the database, then
reopen it, recreating the publishersTable object bound to the publisher
combo box. We then reset the combo box to the saved value.

4. Save the application and run it. Click Add New. A blank record
appears. Type a book Title and an ISBN. Assume the publisher name
you want is not in the drop-down list. Click the Publishers button. The
Publishers input form appears. Click Add New. Add a publisher using
this input form. Click Save. Click Done. The Titles form reappears.
You should still be in Add mode with your new title displayed. Click
the drop-down button and pick your new publisher. Click Save. Your
new book title is saved and your newly added publisher will be
available for all future users. The database engine does all the saving
work. Here’s my form after adding a new book with a new publisher:

Don’t try using the Publisher Input Form Help button yet. It may not
work, but we’ll fix that at the end of this chapter. And, there is one other
problem with the Publishers input form you may or may not have
noticed. We earlier noted the same problem with the Titles form. The
Publishers form has many entries. If you want to find a particular one,
the only tools at your disposal are the four navigation buttons. Let’s add
a find capability identical to that used in the Titles table. That is, if the
user types the first few letters of a Publishers name, the program will
find the record. And, while we’re at it, let’s also add the ability to
display the navigational information (current record and number of
records). And, since we’ll need the same capabilities for the Authors
input form, we’ll make the same changes on that form, too

Modify Publishers Input Form
1. Make sure the Publishers (saved as frmPublisher.cs) input form is in

the Visual C# design window. Add a group box to the lower left corner
of the form. Place a label, a text box and button in the group box. Set
these properties:

groupBox1:
Name grpFindPublisher
Text Find Publisher

label1:
AutoSize False
Text Type first few letters of Publisher Name

textBox1:
Name txtFind
TabStop False

button1:
Name btnFind
Text Find
TabStop False

When done, the modified form should look like this (I had to make my
form a little longer):

2. In the SetState method, enable the Find Publisher group box in View
mode, disable it in Add and Edit mode. Use the grpFindPublisher
Enabled property.

3. Add this code to the btnFind_Click event method:

private void btnFind_Click(object sender, EventArgs e)
{

if (txtFind.Text.Equals(""))
{

return;
}
int savedRow = publishersManager.Position;
DataRow[] foundRows;
publishersTable.DefaultView.Sort = "Name";

foundRows = publishersTable.Select("Name LIKE '" +
txtFind.Text + "*'");

if (foundRows.Length == 0)
{

publishersManager.Position = savedRow;
}
else
{

publishersManager.Position =
publishersTable.DefaultView.Find(foundRows[0]["Name"]);

}
}

This code is identical to that used in the Titles table. It first saves the
position of the currency manager. It then uses the Select method of the
data table to find all rows with a Name field LIKE the input letter(s)
(we append the wild card character, *). If the search is not successful,
the saved position is restored.

4. Save the form. Rerun the Titles table application. Click Publishers. Try
out the Find function. Make sure it works properly. Here, I found
KIDware:

Click Done. Stop and save the application.

We’ll now add code to keep track of and display the number of records in
the Publishers data table.

1. Add a general method named SetText to your application. Use this
code:

private void SetText()
{

this.Text = "Publishers - Record " +
(publishersManager.Position + 1).ToString() + " of " +
publishersManager.Count.ToString() + " Records";
}

This sets the form Text property to reflect the current record (Position)

and the total number of records (Count).

2. Add this single line of code at the bottom of the frmPublishers_Load
to initialize the display of the number of records:

SetText();

3. When we move to a new record, the currency manager position changes
so we need to update the title bar information. Add this line of code at
the end of the btnFind_Click, btnFirst_Click, btnPrevious_Click,
btnNext_Click and btnLast_Click event methods:

SetText();

4. When we add, save or delete a record, the number of records and current
position may change. Also, if we cancel adding a record, there will be
changes. Add this line of code at the end of the btnAddNew_Click,
btnSave_Click, btnCancel_Click and btnDelete_Click event methods
to reflect this change:

SetText();

5. Save the form and run the application. Click Publishers. Note
navigation information is now displayed in the form’s title bar area:

As you add or delete publishers, this number will change. Add a phony
publisher, then delete it to make sure this feature works. When done,
stop and save the application.

Modify Authors Input Form
We will soon need the ability to edit, add, and delete authors in the books
database Authors table. We will want the ability to search using the
Authors input form and know how many records there are. So, we’ll now
modify the Authors input form in the same manner we just modified the
Publishers input form. Then, the modified form will be available for author
editing.

1. Add the form from Example 6-7 (the last incarnation of the Authors
input form; you may have saved it in a different location) to the current
project. Save this form as AuthorForm.cs.

2. In the AuthorForm.cs and AuthorForm.Designer.cs files, change
namespace Example_6_7 to namespace Example_6_9. This allows
us to properly reference this file.

3. Add a group box to the lower left corner of the form. Place a label, a
text box and button in the group box. Set these properties:

groupBox1:
Name grpFindAuthor
Text Find Author

label1:
AutoSize False
Text Type first few letters of Author Name

textBox1:
Name txtFind
TabStop False

button1:
Name btnFind

Text Find
TabStop False

When done, the modified form should look like this (I had to make my
form a little longer):

4. In the SetState method, enable the Find Author group box in View
mode, disable it in Add and Edit mode. Use the grpFindAuthor
Enabled property.

5. Add this code to the btnFind_Click event method:

private void btnFind_Click(object sender, EventArgs e)
{

if (txtFind.Text.Equals(""))
{

return;
}
int savedRow = authorsManager.Position;
DataRow[] foundRows;
authorsTable.DefaultView.Sort = "Author";
foundRows = authorsTable.Select("Author LIKE '" +

txtFind.Text + "*'");
if (foundRows.Length == 0)
{

authorsManager.Position = savedRow;
}
else
{

authorsManager.Position =
authorsTable.DefaultView.Find(foundRows[0]["Author"]);

}
}

This code is identical to that used in the Titles and Publishers table. It
first saves the position of the currency manager. It then uses the Select
method of the data table to find all rows with a Author field LIKE the
input letter(s) (we append the wild card character, *). If the search is not
successful, the saved position is restored.

6. Save the form. Go to the Solution Explorer window and open the
Program.cs file. Make the shaded change in the Main method:

static void Main()
{

Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new frmAuthors ());

}

We are temporarily changing the startup form to test our changes to the
Authors input form. Run the application. The Authors form should
appear. Try out the Find function. Make sure it works properly. Here, I
found myself (added a while back):

Click Done. Stop and save the application. Like the Publisher form, the
Author form’s Help button may not work yet, but it will before we
finish the application.

We’ll now add code to keep track of and display the number of records in
the Authors table.

1. Add a general method named SetText to your application. Use this
code:

private void SetText()
{

this.Text = "Authors - Record " +
(authorsManager.Position + 1).ToString() + " of " +
authorsManager.Count.ToString() + " Records";
}

This sets the form Text property to reflect the current record (Position)
and the total number of records (Count).

2. Add this single line of code at the bottom of the frmAuthors_Load to
initialize the display of the number of records:

SetText();

3. When we move to a new record, the currency manager position changes
so we need to update the title bar information. Add this line of code at
the end of the btnFind_Click, btnFirst_Click, btnPrevious_Click,
btnNext_Click and btnLast_Click event methods:

SetText();

4. When we add, save or delete a record, the number of records and current
position may change. Also, if we cancel adding a record, there will be
changes. Add this line of code at the end of the btnAddNew_Click,
btnSave_Click, btnCancel_Click and btnDelete_Click event methods
to reflect this change:

SetText();

5. Save the form and run the application. Note navigation information is
now displayed in the form’s title bar area:

As you add or delete Authors, this number will change. Add a phony
Author, then delete it to make sure this feature works. When done, stop
the application. In Program.cs, reset the startup form to frmTitles.
Make sure it is saved. We leave this example for a bit, while we build a
little ‘helper’ project.

Adding Author Names
This marathon example continues. We’re ready to add author names to
the Titles input form. Notice we say author names, not name. That is,
books may have more than one author. This fact makes managing author
names a difficult task. Difficult, but not impossible. Let’s begin to tackle
the problem.

First, you might be asking how do we know there may be more than one
author listed for a particular book title? If you go way back to Chapter 2,
where we took our first look at the books database, note there were 8,569
titles in the Titles table, meaning there are 8,569 unique ISBN values (the
primary key). Yet, in the Title_Author table, matching ISBN values with
author identification numbers (Au_ID), there are 16,056 entries! This
means there is not a unique Au_ID value for each ISBN value. This
database obviously allows multiple Au_ID values for each ISBN value.

The next question is: how many authors could be listed for each title? We
need to know this to build our input form. Unfortunately, the answer to
this question is not obvious, unless the person who built the database is
around to ask. But, using our Visual C# database programming skills, we
can play detective and find out the answer. We build a little project that
opens the books database and goes through the Title_Author table
counting how many authors are listed for each title (ISBN value). You
might think this is a daunting task, but Visual C# makes it simple.

Example 6-10

Database Detective – Author Search
1. Again, make sure the Books DBMS Project (Example 6-9) is saved.

Start a new project. Add a list box control (ListBox1). We won’t worry
about setting proper properties. My form looks like this:

2. Add this line at the top of the code window:

using System.Data.OleDb;

3. Put this code in the Form1_Load event method:

private void Form1_Load(object sender, EventArgs e)
{

OleDbConnection booksConnection;
OleDbCommand ISBNCommand;
OleDbDataAdapter ISBNAdapter;
DataTable ISBNTable;
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data

Source = c:\\VCSDB\\Working\\BooksDb.accdb");
booksConnection.Open();
// establish command object
ISBNCommand = new OleDbCommand("Select * from

Title_Author ORDER BY ISBN", booksConnection);
// establish data adapter/data table
ISBNAdapter = new OleDbDataAdapter();
ISBNAdapter.SelectCommand = ISBNCommand;
ISBNTable = new DataTable();
ISBNAdapter.Fill(ISBNTable);
// Count authors
int author;
int[] authorCount = new int[11];
string lastISBN = "";
// Allow for up to 10 authors per title
for (author = 1; author <=10; author++)
{

authorCount[author] = 0;
}
author = 1;
// Check each listing for repeated ISBN
foreach (DataRow myRow in ISBNTable.Rows)
{

if (myRow["ISBN"].Equals(lastISBN))
{

// If ISBN repeated, additional author
author++;

}
else
{

// No more authors for this ISBN
authorCount[author]++;
author = 1;

lastISBN = myRow["ISBN"].ToString();
}

}
// display results
for (author = 1; author <=10; author++)
{

listBox1.Items.Add(authorCount[author].ToString() + "
Books with " + author.ToString() + " Authors");

}
// dispose
booksConnection.Close();
booksConnection.Dispose();
ISBNCommand.Dispose();
ISBNAdapter.Dispose();
ISBNTable.Dispose();

}

The idea behind this code is simple. Using familiar code, we load the
Title_Author table into a data table object (ISBNTable) ordered by
ISBN. The SQL statement that does this is:

SELECT * FROM Title_Author ORDER BY ISBN

We then go through the data table, one record at a time. If the current
ISBN value is the same as the one before (lastISBN), we have an
additional author. If not, we are looking at a new book. The index of the
array authorCount[] keeps track of how many books have that number
of authors. We allow for up to 10 authors per book (we ignore the 0th

element of the array). We initially set all array elements to zero. Once,
we check all the records, we present the summary in the list box.

4. Save and run the example. You should see (after a bit of disk whirring):

This table shows that, at most, there are four authors for a book. We will
allow for that. It’s a good check in examples like this to make sure the
reported math is correct.

Can you see that this table covers all 16,056 entries in the Title_Author
table? (Hint: multiply the number of authors by the number of books
and add.) Note this code cannot show us how many books have zero
authors, since such a book would not have a listing in the Title_Author
table. To find this information, note there are 7,094 books (591 + 4506
+ 1536 + 461) with 1 to 4 authors. Recall the Titles table has 8569
listings, hence 1,475 books (8,569 – 7,094) have zero authors. All of
these numbers assume you have not modified any entries in the original
Titles or Title_Author tables in the BooksDB.accdb file.

Example 6-10

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the books database is SQLBooksDB.mdf.
Copy SQLBooksDB.mdf to your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. In Form1_Load method, use these objects:

SqlConnection booksConnection;
SqlCommand ISBNCommand;
SqlDataAdapter ISBNAdapter;

4. Use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

5. Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

Viewing Author Selections
Our quick example shows that we need to be able to handle up to four
authors on the Titles input form. But, notice the books database Titles
table has no author information. So, if we input authors on the Titles input
form, what do we do with the information? We need to somehow connect
the Titles table (via the ISBN field) to the Title_Author table (which
matches ISBN to Au_ID) to the Authors table (which has author
information, particularly the Author). Perhaps, a true SQL expert could
construct a query where the Titles input form displays all the book title
information along with the corresponding author(s). Then, all database
management tasks would be automated via the database engine. But, I, not
being a SQL expert, don’t know how to do that. If you do, give it a try.
Here, we will use a more ad hoc approach using our Visual C#
programming skills to develop a solution. We’ll go slow, taking it in small
steps.

The basic requirement from the user is up to four author identification
numbers (Au_ID fields) for each title in the Titles table. These values will
be matched with the corresponding title ISBN field in the Title_Author
table. Like the Publisher information we added earlier in this example, we
would not expect a user to know a particular author’s identification
number, but we would expect him or her to know the author’s name.
Hence, it looks like data bound combo boxes (listing author names to
choose from) would be a good place to start.

1. Re-open the BOOKS DBMS application we have been working on
(Example 6-9). Open the Titles form. Add four label controls and four
combo boxes to the form. Set these properties:

label1:
Text Author 1

label2:
Text Author 2

label3:
Text Author 3

label4:
Text Author 4

comboBox1:
Name cboAuthor1
BackColor White (changed so we can see values when

Enabled is false)
DropDownStyle DropdownList

comboBox2:
Name cboAuthor2
BackColor White (changed so we can see values when

Enabled is false)
DropDownStyle DropdownList

comboBox3:
Name cboAuthor3
BackColor White (changed so we can see values when

Enabled is false)
DropDownStyle DropdownList

comboBox4:
Name cboAuthor4
BackColor White (changed so we can see values when

Enabled is false)
DropDownStyle DropdownList

My completed form looks like this:

We will add four data table objects to provide a list of author names for
the user to choose from in each of the four combo boxes.

2. Add these declarations at the form level:

ComboBox[] authorsCombo = new ComboBox[4];
OleDbCommand authorsCommand;
OleDbDataAdapter authorsAdapter;
DataTable[] authorsTable = new DataTable[4];

Putting the combo boxes in an array (authorsCombo) will make our
coding a little simpler. The array of data tables (authorsTable) will be
used to populate these combo boxes with author names.

3. Add the shaded code to the frmTitles_Load event to create the needed
data tables and set up the combo box binding (nearly identical to what
we did for publisher information with no binding information):

private void frmTitles_Load(object sender, EventArgs e)

{
try
{

// point to help file
hlpPublishers.HelpNamespace = Application.StartupPath +
"\\publishers.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
// establish command object
titlesCommand = new OleDbCommand("SELECT * FROM
Titles

ORDER BY Title", booksConnection);
// establish data adapter/data table
titlesAdapter = new OleDbDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
// bind controls to data table
txtTitle.DataBindings.Add("Text", titlesTable, "Title");
txtYear.DataBindings.Add("Text", titlesTable,
"Year_Published");
txtISBN.DataBindings.Add("Text", titlesTable, "ISBN");
txtDescription.DataBindings.Add("Text", titlesTable,
"Description");
txtNotes.DataBindings.Add("Text", titlesTable, "Notes");
txtSubject.DataBindings.Add("Text", titlesTable,
"Subject");
txtComments.DataBindings.Add("Text", titlesTable,
"Comments");
// establish currency manager
titlesManager =

(CurrencyManager)this.BindingContext[titlesTable];
// establish publisher table/combo box to pick publisher
publishersCommand = new OleDbCommand("Select * from

Publishers ORDER BY Name", booksConnection);
publishersAdapter = new OleDbDataAdapter();
publishersAdapter.SelectCommand = publishersCommand;
publishersTable = new DataTable();
publishersAdapter.Fill(publishersTable);
cboPublisher.DataSource = publishersTable;
cboPublisher.DisplayMember = "Name";
cboPublisher.ValueMember = "PubID";
cboPublisher.DataBindings.Add("SelectedValue",

titlesTable, "PubID");
// set up combo box array
authorsCombo[0] = cboAuthor1;
authorsCombo[1] = cboAuthor2;
authorsCombo[2] = cboAuthor3;
authorsCombo[3] = cboAuthor4;
authorsCommand = new OleDbCommand("Select * from

Authors ORDER BY Author", booksConnection);
authorsAdapter = new OleDbDataAdapter();
authorsAdapter.SelectCommand = authorsCommand;
for (int i = 0; i < 4; i++)
{

// establish author table/combo boxes to pick author
authorsTable[i] = new DataTable();
authorsAdapter.Fill(authorsTable[i]);
authorsCombo[i].DataSource = authorsTable[i]; ;
authorsCombo[i].DisplayMember = "Author";
authorsCombo[i].ValueMember = "Au_ID";
// set all to no selection
authorsCombo[i].SelectedIndex = -1;

}

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error establishing Titles
table.", MessageBoxButtons.OK, MessageBoxIcon.Error);

return;
}
this.Show();
SetState("View");
SetText();

}

4. Add these lines near the bottom of the frmTitles_Closing method to
dispose of our new objects:

authorsCommand.Dispose();
authorsAdapter.Dispose();
authorsTable[0].Dispose();
authorsTable[1].Dispose();
authorsTable[2].Dispose();
authorsTable[3].Dispose();

5. Modify the SetState method to disable the four combo boxes in View
mode. Enable the combo boxes in Add and Edit mode.

6. Save the application and run it. There’s a chance the Authors form will
appear instead of the Titles form. This will happen if you forgot to reset
the startup form when testing the Authors form. To get the proper
startup form, open the Program.cs file and make the shaded change in
the Main method:

static void Main()
{

Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new frmTitles());

}

Once the proper form appears, no authors will be listed – we need some
code to do that. Click Edit. Click a combo box to see the drop down
author lists:

Change one of the authors (any changing won’t be saved) just to see
how the interface works. When the drop-down box is displayed, you can
press the first letter of the last name, if you know it, for faster navigation
among the names. This only works in Edit mode, the list is disabled in
View mode. Notice you can’t delete a selected author. We’ll correct that
now. Stop the application.

7. Next to each combo box, place a small button control. Name the buttons
btnXAuthor1, btnXAuthor2, btnXAuthor3, btnXAuthor4 and give
each button a Text of X (use a bold font). Set each button’s TabStop to
False. The form looks like this now:

8. In the SetState method, Enable these buttons in Add and Edit mode,
disable them in View mode. Add this code to the btnXAuthor_Click
method (handles the click on any of the four buttons):

private void btnXAuthor_Click(object sender, EventArgs e)
{

Button whichButton = (Button) sender;
switch (whichButton.Name)
{

case "btnXAuthor1":
cboAuthor1.SelectedIndex = -1;
break;

case "btnXAuthor2":
cboAuthor2.SelectedIndex = -1;
break;

case "btnXAuthor3":
cboAuthor3.SelectedIndex = -1;

break;
case "btnXAuthor4":

cboAuthor4.SelectedIndex = -1;
break;

}
}

When a button is clicked, the corresponding combo box selection is
cleared.

9. Save the application and run it. Click Edit. Choose an author. Then,
click the X button to delete it. The deletion won’t be saved. We need
some code to do that.

Viewing Author Names
As a next step, we want the proper author(s) to appear as each title is listed
on the Titles form. This is where some tricky coding and paying attention
to details comes into play. For a particular title, we would like to form a
small version of the Title_Author table (using another data adapter) like
this that shows the author identifications for the title (referenced by its
ISBN value):

The ISBN value will be the same for each row with up to four Au_ID
values. To form the table, we use our old friend SQL. For our example,
assume the displayed record has an ISBN value of SearchString. The
SQL statement to form the above table is:

SELECT Title_Author.* FROM Title_Author
WHERE Title_Author.ISBN = 'SearchString'

After processing this SQL statement, we determine how many records (if
any) are in the resulting data table. For each record, we set the
ValueSelected property of the corresponding combo box control to
Au_ID. By doing this, the author name will magically appear! Let’s write
this code.

1. Return to the BOOKS DBMS application. Add this code in the form
level declarations to create the objects we need:

OleDbCommand ISBNAuthorsCommand;
OleDbDataAdapter ISBNAuthorsAdapter;
DataTable ISBNAuthorsTable;

2. Add the general method GetAuthors to retrieve the authors for the
current record:

private void GetAuthors()
{

string SQLStatement = "SELECT Title_Author.* FROM
Title_Author WHERE Title_Author.ISBN = '" + txtISBN.Text +
"'";

for (int i = 0; i < 4; i++)
{

authorsCombo[i].SelectedIndex = -1;
}
// establish author table/combo boxes to pick author
ISBNAuthorsCommand = new OleDbCommand(SQLStatement,

booksConnection);
ISBNAuthorsAdapter = new OleDbDataAdapter();
ISBNAuthorsAdapter.SelectCommand =
ISBNAuthorsCommand;
ISBNAuthorsTable = new DataTable();
ISBNAuthorsAdapter.Fill(ISBNAuthorsTable);
if (ISBNAuthorsTable.Rows.Count == 0)
{

return;
}
for (int i = 0; i < ISBNAuthorsTable.Rows.Count; i++)
{

authorsCombo[i].SelectedValue =
ISBNAuthorsTable.Rows[i]["Au_ID"].ToString();

}
}

In this code, we form the SQL statement for the given ISBN value,
blank out the combo boxes and form the data table. For each author, we
set the combo box SelectedValue property to the Au_ID value.

3. Add these lines near the bottom of the frmTitles_Closing event method
to dispose of our new objects when done:

ISBNAuthorsCommand.Dispose();
ISBNAuthorsAdapter.Dispose();
ISBNAuthorsTable.Dispose();

4. Add this single line of code at the bottom of the frmTitles_Load to
initialize the author display:

GetAuthors();

5. When we move to a new record, the currency manager position changes
so we need to update the authors. Add this line of code at the end of the
btnFind_Click, btnFirst_Click, btnPrevious_Click, btnNext_Click
and btnLast_Click event methods:

GetAuthors();

6. When we delete a record, the displayed information changes. Add this
line of code at the end of the btnDelete_Click event method to reflect
this change:

GetAuthors();

7. When we cancel an edit, the author combo boxes need to be returned to
their ‘unedited values.’ Add this line of code at the end of the
btnCancel_Click event method:

GetAuthors();

8. When adding a new title to the database (clicking Add New), we need
to blank out the author combo boxes. Add this code at the top of the
btnAddNew_Click method:

cboAuthor1.SelectedIndex = -1;
cboAuthor2.SelectedIndex = -1;
cboAuthor3.SelectedIndex = -1;
cboAuthor4.SelectedIndex = -1;

9. Save the application and run it. Scroll through the records. Notice for
each title, the author(s) can be seen. Here’s a record we looked at way
back in Chapter 2 (when we looked at relational databases):

The author names appear shaded because they cannot be edited in View
mode. It may take a while to display each record, depending on the
speed of processing the SQL statement. Click Edit. Click one of the
author drop-down boxes. Notice the listed author is selected.

Saving Author Names
We can now list and modify any author(s) associated with a particular
book, but we don’t have the capability to save any modifications. How do
we know if the user has changed any book authors, requiring a Save? We
don’t, but we could write code to determine if any author names have been
changed, added or deleted. We’ll take a simpler approach. When a Save is
invoked, we create a new author data table populated with the displayed
author names (actually the Au_ID values and corresponding ISBN values
needed by the Title_Author table). The ADO .NET engine will then
incorporate these changes into the database. This is another good example
of using Visual C# to automate database management tasks.

1. Return to the DBMS project. Add the shaded code to the
btnSave_Click event method:

private void btnSave_Click(object sender, EventArgs e)
{

if (!ValidateData())
{

return;
}
string savedName = txtTitle.Text;
int savedRow;
try
{

titlesManager.EndCurrentEdit();
OleDbCommandBuilder ISBNCommandUpdate = new

OleDbCommandBuilder(ISBNAuthorsAdapter);
// delete all rows of data table then repopulate
if (ISBNAuthorsTable.Rows.Count != 0)
{

for (int i = 0; i < ISBNAuthorsTable.Rows.Count; i ++)
{

ISBNAuthorsTable.Rows[i].Delete();
}
ISBNAuthorsAdapter.Update(ISBNAuthorsTable);

}
for (int i = 0; i < 4; i ++)
{

if (authorsCombo[i].SelectedIndex != -1)
{

ISBNAuthorsTable.Rows.Add();
ISBNAuthorsTable.Rows[ISBNAuthorsTable.Rows.Count
- 1]["ISBN"] = txtISBN.Text;
ISBNAuthorsTable.Rows[ISBNAuthorsTable.Rows.Count
- 1]["Au_ID"] = authorsCombo[i].SelectedValue;

}
}
ISBNAuthorsAdapter.Update(ISBNAuthorsTable);
titlesTable.DefaultView.Sort = "Title";
savedRow = titlesTable.DefaultView.Find(savedName);
titlesManager.Position = savedRow;
MessageBox.Show("Record saved.", "Save",
MessageBoxButtons.OK,

MessageBoxIcon.Information);
SetState("View");

}
catch (Exception ex)
{

MessageBox.Show("Error saving record.", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
SetText();

}

The new code first deletes all records. It then looks at all four combo
boxes for author names. If a combo box holds a name, a record is added
to the data table and proper field values (ISBN, Au_ID) established.
The data adapter holding the data table is then updated to save the
changes to the database.

2. Save the project. Run it. Try all functions. Add a title, fill in the fields
and save it. Here’s a listing for this book (Visual C# and Databases):

I made up an author since I’m not listed – we’ll fix that next. Return to
that record to see how the author(s) were saved. Make sure the Cancel
function works with both Add and Edit modes.

Adding Author Editing
We readdress a problem encountered earlier with the Publisher entry.
What if the user can’t find the author they want in the drop-down list? This
could often happen when adding new titles to the database. If the desired
author name is not in the list, we need to either edit a current entry or add a
new entry to the Authors table. Once the new author name is in the
Authors table, it will be available for use in the Titles input form. Editing
is done using the Authors input form modified and saved earlier as
AuthorForm.cs.

1. On the Titles input form, add a button to the left of the Publishers
button. Give it a Name property of btnAuthors and a Text property of
A&uthors. Add this code to the btnAuthors_Click event:

private void btnAuthors_Click(object sender, EventArgs e)
{

frmAuthors authorsForm = new frmAuthors();
string[] authorsSave = new string[4];
authorsSave[0] = authorsCombo[0].Text;
authorsSave[1] = authorsCombo[1].Text;
authorsSave[2] = authorsCombo[2].Text;
authorsSave[3] = authorsCombo[3].Text;
authorsForm.ShowDialog();
authorsForm.Dispose();
// need to regenerate authors data
booksConnection.Close();
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
authorsAdapter.SelectCommand = authorsCommand;

for (int i = 0; i < 4; i++)
{

authorsTable[i] = new DataTable();
authorsAdapter.Fill(authorsTable[i]);
authorsCombo[i].DataSource = authorsTable[i];
if (!authorsSave[i].Equals(""))
{

authorsCombo[i].Text = authorsSave[i];
}
else
{

authorsCombo[i].SelectedIndex = -1;
}

}
}

This code displays the Authors input form to allow any editing
necessary. Before displaying the form, the current author choices are
saved (authorsSave array). When the Titles form becomes active again,
there may be new values in the database (from editing the Authors
table). To see these changes, we close our connection to the database,
then reopen it, recreating the authorsTable[] objects bound to the
author combo boxes. The saved values are then used to reestablish
author choices.

2. Save the application and run it. Click Add New. A blank record
appears. Type a book Title, an ISBN, and select a Publisher. Assume
the author name you want is not in the drop-down list. Click the
Authors button. The Authors input form appears. Click Add New. Add
an author using this input form. Click Save. Click Done. The Titles
form reappears (it may take a while to rebuild). You should still be in
Add mode with your new title displayed. Click the drop-down button
and pick your new author. Click Save. Your new book title is saved and
your newly added author will be available for all future users. The
database engine does all the saving work. Here’s my form after editing
the listing built for this book (Visual C# and Databases) after adding
me to the Authors table:

Input Control Navigation
As the user enters data on the Titles form, there should be logical
movement from one control to the next. This is easily accomplished using
the control TabIndex property and a little code in KeyPress events.

1. Return to the DBMS application. Establish the following TabIndex
values for each control used for input (this will set a logical progression
from one control to the next):

Control Name TabIndex
txtTitle 0
txtYear 1
txtISBN 2
cboAuthor1 3
cboAuthor2 4
cboAuthor3 5
cboAuthor4 6
cboPublisher 7
txtDescription 8
txtNotes 9
txtSubject 10
txtComments 11

2. Save the application and run it. Tab through the controls and notice the
sequencing in View, Edit and Add modes.

3. Add this code to the cboPublisher_KeyPress event method:

private void cboPublisher_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)

{
txtDescription.Focus();

}
}

Add this code to the cboAuthor_KeyPress event method (invoked by
all four author combo boxes):

private void cboAuthor_KeyPress(object sender,
KeyPressEventArgs e)
{

ComboBox whichComboBox = (ComboBox) sender;
switch (whichComboBox.Name)
{

case "cboAuthor1":
cboAuthor2.Focus();
break;

case "cboAuthor2":
cboAuthor3.Focus();
break;

case "cboAuthor3":
cboAuthor4.Focus();
break;

case "cboAuthor4":
cboPublisher.Focus();
break;

}
}

Add this code to the txtInput_KeyPress event method (invoked by all
text box inputs):

private void txtInput_KeyPress(object sender,
KeyPressEventArgs e)

{
TextBox whichTextBox = (TextBox) sender;
if ((int) e.KeyChar == 13)
{

switch (whichTextBox.Name)
{

case "txtTitle":
txtYear.Focus();
break;

case "txtYear":
if (myState.Equals("Add"))
{

txtISBN.Focus();
}
else
{

cboAuthor1.Focus();
}
break;

case "txtISBN":
cboAuthor1.Focus();
break;

case "txtDescription":
txtNotes.Focus();
break;

case "txtNotes":
txtSubject.Focus();
break;

case "txtSubject":
txtComments.Focus();
break;

case "txtComments":
txtTitle.Focus();

break;
}

}
}

All of the above code detects if <Enter> is clicked and moves the focus
accordingly. This adds another way to move from control to control.
Note ISBN (txtISBN) can only be accessed in Add mode.

4. Save the application and run it. Note how pressing <Enter> moves you
from control to control in a logical order.

Entry and Input Validation
In earlier work, we implemented entry and input validation for the
Authors and Authors input forms. We now need similar validation for the
Titles input form. The validation rules we will apply are:

∘ A Title must be entered.
∘ If a Year Published is entered, it must be valid.
∘ An ISBN value must be entered and have a specified format.
∘ A Publisher must be entered.

We will develop a method that checks these validation rules. The method
will be called prior to saving a record. We first validate the Title field.

1. Return to the BOOKS DBMS application. Make sure you are working
with the Titles table. Modify the ValidateData method to check for
existence of a Title (txtTitle; new code is shaded):

private bool ValidateData()
{

string message = "";
bool allOK = true;
if (txtTitle.Text.Equals(""))
{

message = "You must input a Title.\r\n";
txtTitle.Focus();
allOK = false;

}
if (!allOK)
{

MessageBox.Show(message, "Validation Error",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}
return (allOK);

}

Recall this method is invoked prior to saving a record permanently. If a
false is returned, the data is not valid.

2. Save the application. Run it. Click Add New, then Save. Make sure the
message box appears:

Click OK. Click Cancel. Click Add New and type in a Title. Click
Save. You may get a message concerning the lack of a PubID field.
This is coming from our error-trapping routine. We will fix the problem
soon. Stop the application.

We’ll now validate the Year Published field (txtYear).

1. Set the MaxLength property for txtYear to 4. Add this code to the end
of the txtInput_KeyPress event to insure only numbers are typed in
this box.

if (whichTextBox.Name.Equals("txtYear"))
{

if ((e.KeyChar >= '0' && e.KeyChar <= '9') || (int) e.KeyChar
== 8)
{

e.Handled = false;
}
else
{

Console.Beep();
e.Handled = true;

}
}

2. Modify the code added earlier in the ValidateData method to check for
a valid date value (most borrowed from the Authors form code).
Changes are shaded:

private bool ValidateData()
{

string message = "";
bool allOK = true;
if (txtTitle.Text.Equals(""))
{

message = "You must input a Title.\r\n";
txtTitle.Focus();
allOK = false;

}
int inputYear, currentYear;
// Check length and range on Year Published
if (!txtYear.Text.Trim().Equals(""))
{

inputYear = Convert.ToInt32(txtYear.Text);
currentYear = DateTime.Now.Year;
if (inputYear > currentYear || inputYear < currentYear -
150)
{

message += "Year published must be between " +
(currentYear - 150).ToString() + " and " +
currentYear.ToString()+ "\r\n";

txtYear.Focus();
allOK = false;

}

}
if (!allOK)
{

MessageBox.Show(message, "Validation Error",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}
return (allOK);

}

3. Save the application and run it. Click Add New. Type in a Title. Type in
valid years and invalid years. Click Save. Make sure the Year
Published validation works correctly. You may still get the missing
PubID error. Stop the application.

Next, we validate the ISBN field (txtISBN). This value is fixed length,
with a specific format. The ISBN is always a 13-character string with
hyphens at positions 2, 10, and 12. The other positions are assumed to
have either numbers or upper case letters. Those who know more about
ISBN values may want to implement different rules about what characters
can be used in different positions. Remember the masked text box control
described back in Chapter 5? This is an excellent place to use such a
control. We need to replace the existing text box, but the work is worth it.
This happens all the time in building applications. At some point, you may
discover one control does a better job than the one you have been using
and you need to do a replacement.

1. Return to the project. Delete the txtISBN textbox control. Add a
masked text box control to the form and resize it to fit the position held
by the previous control. Set these properties:

Name txtISBN
Mask >A-AAAAAAA-A-A (allows numbers and upper case letters)
TabIndex 2

By giving the control the same name, we can use the existing code.

2. Add this txtISBN_KeyPress event method:

private void txtISBN_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
{

cboAuthor1.Focus();
}

}

We can’t use the existing txtInput_KeyPress method since it only
works with text box controls, not masked text box controls.

The form with the new control will look like this (note the mask):

3. Save the application and run it. Make sure the navigation among the
controls works under all application states (View, Edit, Add). Click
Add New. Type in a Title and Year Published. Tab to the ISBN field.
Type in a value. Notice how the masked control makes entry simple.
Here’s a value I entered for the book I’ve been editing:

Stop the application.

How do we validate the value in the masked edit control? The control
insures valid characters are typed and that they are positioned correctly.
The only validation we need to do is check that all characters are filled in.
To do this, we check the length of the Text property. If the length of the
Text property is 13 characters (includes the three hyphens), it is assumed
to be valid.

1. Add this validation code near the bottom of the ValidateData method
(before checking to see if a message box is needed):

if (txtISBN.Text.Length != 13)
{

message += "Incomplete ISBN entry.\r\n";
txtISBN.Focus();
allOK = false;

}

2. Save and run the application. Click Add New. Type a Title and Year

Published value. Try out the ISBN masked text box control. Type an
incomplete entry. Click Save. Complete the entry. Click Save. Did it
work properly? Yeah, I know, the PubID error may still show up. We’ll
fix that now.

As a last step, we validate the Publisher name. We just want to make sure
a publisher is entered to get rid of that annoying error we keep getting.

1. Add this code near the bottom of the ValidateData event (before
checking to see if a message box is needed):

if (cboPublisher.Text.Equals(""))
{

message += "You must select a Publisher.";
cboPublisher.Focus();
allOK = false;

}

2. Save and run the application. You should now test all four of the
validation rules. When satisfied they are working properly, we’ll do one
more thing to wrap up this mammoth example.

Titles Form On-Line Help
Recall that the Help buttons on the Authors input form and the
Publishers input form may not work. And, the Help button on the main
Titles input form definitely won’t work because we haven’t developed an
on-line help system for that form yet. Let’s solve all these problems now
and finish the Books Database Management System.

Every Visual C# application can have just one help file. We need to
combine the Authors and Publishers help files with one developed here for
the Titles table. This complete file, properly divided into topics, will form
the books database help system. Refer back to the Chapter 5 notes to
complete each step listed here.

1. Using FrontPage or a similar product, write a topic file for the Titles
form (saved as titles.htm in the VCSDB\Code\Class 6\Example 6-
9\HelpFile folder). The topics and text I used are:

2. Copy the authors.htm (Example 6-7) and publishers.htm (Example 6-
8) topic files into the same folder as titles.htm.

3. Using the HTML Help Workshop, create a project file for this example.
Name it books.hhp.

4. Using the HTML Help Workshop, create a contents file for this
example. Name it books.hhc. Have one topic for each of the three input
forms.

5. Using the HTML Help Workshop, save and compile your help file
(named books.chm in the the VCSDB\Code\Class 6\Example 6-
9\HelpFile folder). Copy this file to the Books DBMS project

Bin\Debug folder.

6. Load the books database application (Example 6-9). Display the Titles
form. Rename the help provider control hlpBooks. Make the shaded
change near the top of the frmTitles_Load method:

private void frmTitles_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpBooks.HelpNamespace = Application.StartupPath +

"\\books.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");
.
.
}

And make the shaded change to the btnHelp_Click method:

private void btnHelp_Click(object sender, EventArgs e)
{

Help.ShowHelp(this, hlpBooks.HelpNamespace);
}

7. Display the Authors form. We need to point it to the new help file.
Make the shaded change near the top of the frmAuthors_Load
method:

private void frmAuthors_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpAuthors.HelpNamespace = Application.StartupPath +

"\\books.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
.
.
}

8. Display the Publishers form. We also need to point it to the new help
file. Make the shaded change near the top of the frmPublishers_Load
method:

private void frmPublishers_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpPublishers.HelpNamespace = Application.StartupPath +

"\\books.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
.
.
}

9. Save and run the application (final version saved in
VCSDB\Code\Class 6\Example 6-9 folder). Click Help. You should

see:

Make sure help works with the Authors and Publishers forms. And,
guess what the Books Database Management System is complete!

Example 6-9

Using SQL Server Databases
Apply specified modifications to the SQL Server version of Example 6-8
making sure to:

Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter
Change all instances of OleDbCommandBuilder to
SqlCommandBuilder

Summary
In this chapter, you built a very large application. You learned how to edit,
add, and delete records in both single table and multiple table databases.
You learned how to find records of interest. The books database
management system you built would rival a mid-size commercial
application, regarding its capabilities. Congratulations if you worked
through this detailed example.

In this chapter, you learned that, though building a database management
system is a long and detailed process, it is relatively straightforward. There
is a set method to follow in implementing any database management task.
The Visual C# environment, with its event-driven nature, allows us to
build an application in stages. This ability lets us build part of the
application, test it, and proceed. There is no need to build an entire
application before it can be tested.

Still remaining in our database studies are the topics of database reports,
distributing applications, and database design. And, later on in the course,
we’ll build three complete database projects.

7
Database Reports

Review and Preview
We have seen that using the ADO .NET data objects, in conjunction with
Visual C#, allows us to build a solid, well-functioning database
management system. We are able to edit, add, delete, and/or find records
within any database.

Once you have gone to all the trouble of managing a database, it is nice to
have the ability to obtain printed or displayed information from your data.
The vehicle for obtaining such information is known as a database report.
In this chapter, we look at how to use Visual C# code to obtain database
reports.

PrintDocument Object
Users expect to have the ability to obtain printed copies of information
contained within a database. This information is in the form of database
reports. Generating reports is a straightforward task. You just need to
determine what information you want in the report and how you want it to
be presented. We look at using the Visual C# PrintDocument object for
database reports. . Objects used in printing are found in the
Drawing.Printing namespace. For any application with printing, add this
using declaration at the top of the code window:

using System.Drawing.Printing;

The Visual C# PrintDocument object provides a virtual space where you
can place information to be printed. This information is placed in the space
using Visual C# properties and methods. You just write code to put
information where you want it. The PrintDocument object does not take
advantage of any data bound controls or database access techniques. You
need to do that in code. The PrintDocument object is good for quick data
report generation and allows lots of flexibility in what can be displayed. It
also allows you to take advantage of several print-related common dialog
controls. And, you don’t have to learn anything new. Using it only requires
your Visual C# knowledge.

The PrintDocument object (in the Drawing.Printing namespace)
controls the printing process and has four important properties:

Property Description
DefaultPageSettings Indicates default page settings for the

document.
DocumentName Indicates the name displayed while the

document is printing.
PrintController Indicates the print controller that guides the

printing process.
PrinterSettings Indicates the printer that prints the document.

The steps to print a document (which may include text and graphics) using

the PrintDocument object are:

➢ Declare a PrintDocument object
➢ Create a PrintDocument object
➢ Set any properties desired.
➢ Print the document using the Print method of the PrintDocument

object.

The first three steps are straightforward. To declare and create a
PrintDocument object named myDocument, use:

PrintDocument myDocument;
.
.

myDocument = new PrintDocument();

Any properties needed usually come from print dialog boxes we’ll
examine in a bit.

The last step poses the question: how does the PrintDocument object
print with the Print method? Printing is done in a general Visual C#
method associated with the PrintDocument.PrintPage event. This is a
method you must create and write. The method tells the PrintDocument
object what goes on each page of your document. Once the method is
written, you need to add the event handler in code so the PrintDocument
object knows where to go when it’s ready to print a page. It may sound
confusing now, but once you’ve done a little printing, it’s very
straightforward.

The general Visual C# method for printing your pages (MyPrintPage in
this case) must be of the form:

private void MyPrintPage(object sender, PrintPageEventArgs e)
{

.

.
}

In this method, you ‘construct’ each page that the PrintDocument object
is to print. And, you’ll see the code in this method is familiar.

In the MyPrintPage method, the argument e (of type
PrintPageEventArgs) has many properties with information about the
printing process. The most important property is the graphics object:

e.Graphics

PrintDocument provides us with a graphics object to ‘draw’ each page we
want to print. We can draw lines, rectangles, images and even text! We’ll
look at how to do this in detail next. But, first, let’s review how to
establish and use the PrintDocument object.

Here is an annotated code segment that establishes a PrintDocument
object (myDocument) and connects it to a method named MyPrintPage
that provides the pages to print via the graphics object:

// Declare the document
PrintDocument myDocument;

.

.
// Create the document and name it
myDocument = new PrintDocument();
myDocument.DocumentName = "My Document";

.

.
// You could set other properties here

.

.
// Add code handler
myDocument.PrintPage += new
PrintPageEventHandler(this.MyPrintPage);
// Print document
myDocument.Print();
// Dispose of document when done printing

myDocument.Dispose();

This code assumes the method MyPrintPage is available. Let’s see how to
build such a method.

Printing Document Pages
The PrintDocument object provides (in its PrintPage event) a graphics
object (e.Graphics) for ‘drawing’ our pages. And, that’s just what we do
using graphics methods. For each page in our printed document, we draw
the desired text information (DrawString method), any lines (DrawLine
method), rectangles (DrawRectangle method) or images (DrawImage
method).

Once a page is completely drawn to the graphics object, we ‘tell’ the
PrintDocument object to print it. We repeat this process for each page we
want to print. This does require a little bit of work on your part. You must
know how many pages your document has and what goes on each page. I
usually define a page number variable to help keep track of the current
page being drawn.

Once a page is complete, there are two possibilities: there are more pages
to print or there are no more pages to print. The e.HasMorePages property
(Boolean) is used specify which possibility exists. If a page is complete
and there are still more pages to print, use:

e.HasMorePages = true;

In this case, the PrintDocument object will return to the PrintPages event
for the next page. If the page is complete and printing is complete (no
more pages), use:

e.HasMorePages = false;

This tells the PrintDocument object its job is done. At this point, you
should dispose of the PrintDocument object.

Let’s look at the graphics object for a single page. The boundaries of the
printed page are defined by the e.MarginBounds properties (these are
established by the PrinterSettings property):

This becomes our palette for positioning items on a page. All properties
are in 1/100th of an inch. Horizontal position is governed by x (increases
from 0 to the right) and vertical position is governed by y (increases from
0 to the bottom).

The process for each page is to decide “what goes where” and then
position the desired information using the appropriate graphics method.
There are many Visual C# graphics methods. Here, we limit the discussion
to printing text, lines, rectangles and images. Before discussing the
graphics methods, we need to provide information on two useful objects:
Pen and Brush.

Pen Object
Some of the printing graphics methods require a Pen object. This virtual
pen is just like the pen you use to write and draw. You can choose color
and width of the pen. You can use pens built into Visual C# or create your
own pen.

In many cases, the pen objects built into Visual C# are sufficient. The
Pens class will draw a line 1 pixel wide in a color you choose. If the
selected color is ColorName, the syntax to refer to such a pen is:

Pens.ColorName

To create your own Pen object (in Drawing namespace), you first declare
the pen using:

Pen myPen;

The pen is then created using the Pen constructor:

myPen = new Pen(color, width);

where color is the color your new pen will draw in and width is the
integer width of the line (in pixels) drawn. This pen will draw a solid line.
The color argument can be one of the built-in colors or one generated with
the FromArgb function.

Once created, you can change the color and width at any time using the
Color and Width properties of the pen object. The syntax is:

myPen.Color = newColor;
myPen.Width = newWidth;

Here, newColor is a newly specified color and newWidth is a new integer
pen width.

When done drawing with a pen object, it should be disposed using the

Dispose method:

myPen.Dispose();

Brush Object
Filling of regions and printing text in Visual C# is done with a Brush
object. Like the Pen object, a brush is just like a brush you use to paint –
just pick a color. You can use brushes built into Visual C# or create your
own brush.

In most cases, the brush objects built into Visual C# are sufficient. The
Brushes class provides brush objects that paint using one of the 141 built-
in colors. The syntax to refer to such a brush is:

Brushes.ColorName

To create your own Brush object (from the Drawing namespace), you
first declare the brush using:

Brush myBrush;

The solid color brush is then created using the SolidBrush constructor:

myBrush = new SolidBrush(color);

where color is the color your new brush will paint with. This color
argument can be one of the built-in colors or one generated with the
FromArgb function.

Once created, you can change the color of a brush any time using the
Color property of the brush object. The syntax is:

myBrush.Color = newColor;

where newColor is a newly specified color.

When done painting with a brush object, it should be disposed using the
Dispose method:

myBrush.Dispose();

Graphics Methods
To place text on the graphics object (e.Graphics), use the DrawString
method. To place the string myString at position (x, y), using the font
object myFont and brush object myBrush, the syntax is:

e.Graphics.DrawString(myString, myFont, myBrush, x, y);

With this statement, you can place any text, anywhere you like, with any
font, any color and any brush style. You just need to make the desired
specifications. Each line of text on a printed page will require a
DrawString statement.

There are two methods for determining the size of strings. This is helpful
for both vertical and horizontal placement of text on a page. To determine
the height (in pixels) of a particular font, use:

myFont.GetHeight(e.Graphics)

If you need width and height of a string use:

e.Graphics.MeasureString(myString, myFont)

This method returns a SizeF structure with two properties: Width and
Height (both in hundredths of an inch). These two properties are useful for
justifying (left, right, center, vertical) text strings.

Many times, you use lines in a document to delineate various sections. To
draw a line on the graphics object, use the DrawLine method:

e.Graphics.DrawLine(myPen, x1, y1, x2, y2);

This statement will draw a line from (x1, y1) to (x2, y2) using the pen
object myPen.

To draw a rectangle (used with tables or graphics regions), use the
DrawRectangle method:

e.Graphics.DrawRectangle(myPen, x1, y1, x2, y2);

This statement will draw a rectangle with upper left corner at (x1, y1) and
lower right corner at (x2, y2) using the pen object myPen.

The DrawImage method is used to position an image (myImage) object
on a page. The syntax is:

e.Graphics.DrawImage(myImage, x, y, width, height);

The upper left corner of myImage will be at (x, y) with the specified
width and height. Any image will be scaled to fit the specified region.

If DrawImage is to be used to print the contents of a panel control hosting
a graphics object (we’ll do this in Chapter 10), you must insure the
graphics are persistent. We review those steps. For a panel named
pnlExample, establish the BackgroundImage as an empty bitmap:

pnlExample.BackgroundImage = new
Drawing.Bitmap(pnlExample.ClientSize.Width,
pnlExample.ClientSize.Height,
Drawing.Imaging.PixelFormat.Format24bppRgb);

Then, establish the drawing object myObject using:

myObject = Graphics.FromImage(pnlExample.BackgroundImage);

Now, any graphics methods applied to this object will be persistent. To
maintain this persistence, after each drawing operation to this object, use:

myObject.Refresh();

The image in this object can then be printed with the DrawImage method:

e.Graphics.DrawImage(pnlExample.BackgroundImage, x, y, width,
height);

The upper left corner of the image will be at (x, y) with the specified

width and height. The image will be scaled to fit the specified region.

The use of each graphics method (and the Pen and Brush objects) will be
illustrated in this chapter’s examples. The best way to learn how to print in
Visual C# is to do lots of it. You’ll develop your own approaches and
techniques as you gain familiarity. You might want to see how some of the
other graphics methods (DrawEllipse, DrawLines, DrawCurves) might
work with printing. Or, look at different brush and pen objects.

Many print jobs just involve the user clicking a button marked ‘Print’ and
the results appear on printed page with no further interaction. If more
interaction is desired, there are three dialog controls that help specify
desired printing job properties: PageSetupDialog, PrintDialog, and
PrintPreviewDialog. Using these controls adds more code to your
application. You must take any user inputs and implement these values in
your program. We’ll show what each control can do and let you decide if
you want to use them in your work. The PrintPreviewDialog control is
especially cool!!

PageSetupDialog Control

The PageSetupDialog control allows the user to set various parameters
regarding a printing task. This is the same dialog box that appears in most
Windows applications. Users can set border and margin adjustments,
headers and footers, and portrait vs. landscape orientation.

PageSetupDialog Properties:

Name Gets or sets the name of the page setup dialog
(I usually name this control dlgSetup).

AllowMargins Gets or sets a value indicating whether the
margins section of the dialog box is enabled.

AllowOrientation Gets or sets a value indicating whether the
orientation section of the dialog box
(landscape vs. portrait) is enabled.

AllowPaper Gets or sets a value indicating whether the
paper section of the dialog box (paper size
and paper source) is enabled.

AllowPrinter Gets or sets a value indicating whether the
Printer button is enabled.

Document Gets or sets a value indicating the
PrintDocument to get page settings from.

MinMargins Gets or sets a value indicating the minimum
margins the user is allowed to select, in
hundredths of an inch.

PageSettings Gets or sets a value indicating the page
settings to modify.

PrinterSettings Gets or sets the printer settings the dialog box
is to modify when the user clicks the Printer
button

FontDialog Methods:

ShowDialog Displays the dialog box. Returned value
indicates which button was clicked by user
(OK or Cancel).

To use the PageSetupDialog control, we add it to our application the same
as any control. It will appear in the tray below the form. Once added, we
set a few properties. Then, we write code to make the dialog box appear
when desired. The user then makes selections and closes the dialog box. At
this point, we use the provided information for our tasks.

The ShowDialog method is used to display the PageSetupDialog control.
For a control named dlgSetup, the appropriate code is:

dlgSetup.ShowDialog();

And the displayed dialog box is:

The user makes any desired choices. Once complete, the OK button is
clicked. At this point, various properties are available for use (namely
PageSettings and PrinterSettings). Cancel can be clicked to cancel the

changes. The ShowDialog method returns the clicked button. It returns
DialogResult.OK if OK is clicked and returns DialogResult.Cancel if
Cancel is clicked.

Typical use of PageSetupDialog control:

➢ Set the Name property. Decide what options should be available.
➢ Use ShowDialog method to display dialog box, prior to printing.
➢ Use PageSettings and PrinterSetting properties to change printed

output.

PrintDialog Control

The PrintDialog control allows the user to select which printer to use,
choose page orientation, printed page range and number of copies. This is
the same dialog box that appears in many Windows applications.

PrintDialog Properties:

Name Gets or sets the name of the print dialog (I
usually name this control dlgPrint).

AllowPrintToFile Gets or sets a value indicating whether the
Print to file check box is enabled.

AllowSelection Gets or sets a value indicating whether the
From... To... Page option button is enabled.

AllowSomePages Gets or sets a value indicating whether the
Pages option button is enabled.

Document Gets or sets a value indicating the
PrintDocument used to obtain PrinterSettings.

PrinterSettings Gets or sets the PrinterSettings the dialog box
is to modify.

PrintToFile Gets or sets a value indicating whether the
Print to file check box is checked

PrintDialog Methods:

ShowDialog Displays the dialog box. Returned value
indicates which button was clicked by user
(OK or Cancel).

To use the PrintDialog control, we add it to our application the same as
any control. It will appear in the tray below the form. Once added, we set a
few properties. Then, we write code to make the dialog box appear when
desired. The user then makes selections and closes the dialog box. At this
point, we use the provided information for our tasks.

The ShowDialog method is used to display the PrintDialog control. For a
control named dlgPrint, the appropriate code is:

dlgPrint.ShowDialog();

And the displayed dialog box is:

The user makes any desired choices. Once complete, the OK button is
clicked. At this point, various properties are available for use (namely
PrinterSettings). Cancel can be clicked to cancel the changes. The
ShowDialog method returns the clicked button. It returns
DialogResult.OK if OK is clicked and returns DialogResult.Cancel if
Cancel is clicked.

Typical use of PrintDialog control:

➢ Set the Name property. Decide what options should be available.
➢ Use ShowDialog method to display dialog box, prior to printing

with the PrintDocument object.
➢ Use PrinterSettings properties to change printed output.

PrintPreviewDialog Control

The PrintPreviewDialog control is a great addition to Visual C#. It lets
the user see printed output in preview mode. They can view all pages,
format page views and zoom in on or out of any. The previewed document
can also be printed from this control. This is also a useful “temporary”
control for a programmer to use while developing printing routines. By
viewing printed pages in a preview mode, rather than on a printed page,
many trees are saved as you fine tune your printing code.

PrintPreviewDialog Properties:

Name Gets or sets the name of the print preview
dialog (I usually name this control
dlgPreview)

AcceptButton Gets or sets the button on the form that is
clicked when the user presses the <Enter>
key.

Document Gets or sets the document to preview.
Text Gets or sets the text associated with this

control.

PrintPreviewDialog Methods:

ShowDialog Displays the dialog box. Returned value
indicates which button was clicked by user
(OK or Cancel).

To use the PrintDialog control, we add it to our application the same as
any control. It will appear in the tray below the form. Once added, we set a
few properties, primarily Document. Make sure the PrintPage event Is
properly coded for the selected Document. Add code to make the dialog
box appear when desired. The document pages will be generated and the
user can see it in the preview window.

The ShowDialog method is used to display the PrintPreviewDialog
control. For a control named dlgPreview, the appropriate code is:

dlgPreview.ShowDialog();

And the displayed dialog box (with no document) is:

The user can use the various layout, zoom and print options in previewing
the displayed document. When done, the user closes the dialog control.

Typical use of PrintPreviewDialog control:

➢ Set the Name property. Set the Document property.
➢ Use ShowDialog method to display dialog box and see the

previewed document.

PrintDocument Object with
Databases
You may be asking yourself, how does all this PrintDocument object
information work with database management systems? It’s really pretty
simple. It’s just a matter of following a few straightforward (though, many
times, detailed) steps.

First, determine what information from the database you want in your
database report. Do you want to print all fields and all records? If so, you
need to develop code to cycle through the records of interest. Do you want
just individual records? Determine, where in your Visual C# application,
this information is located. Usually, it’s found in properties of the controls
on your form(s).

Second, determine the layout for each page of your database report. My
approach is to sketch it out on a piece of standard-sized graph paper. This
is a good reference when writing the code – the next step.

Third, add control(s) and code to your Visual C# application to access the
database report printing routine. This is usually a button with a Click event
containing the printing code.

Lastly, write the Visual C# code that establishes each page of your
database report. This code usually goes in its own method. Use positioning
properties (the e argument in the PrintPage event method) to place all
information in desired positions. A nice thing about the PrintDocument
object is that there is no need to place information sequentially. That is,
you don’t have to start at the top and work your way down. You can place
information anywhere on the page in any order. When the page is
complete, it is sent to the printer using the e.HasMorePages property. You
will find that you need to write lots of code, but it’s very easy code to
write. Let’s look at each of these steps with an example.

The first example (Example 7-1) we build here is simple, printing a single
page. When the user clicks a button to print, the report goes directly to

their default printer. With large database reports, spanning many pages,
this is not a good idea. The user should be given an interface that allows
him or her to know how big a print job is ahead. Based on this
information, the user should be able to decide whether to continue printing
the entire report or select portions of the report. The PrintPreviewDialog
control provides such utility. In Examples 7-2 and 7-3, we give an example
using this control as a printing interface.

Example 7-1

Database Report
In this example, we use the books database management system built in
Chapter 6. We will add the capability to print any book title’s displayed
record.

1. If you like, make a copy of the books database management system built
in Example 6-9 before starting this example. Open that project. Make
sure the Titles form is active. Add a button and a picture box control.
Set these properties:

button 1:
Name btnPrintRecord
Text Print &Record

pictureBox1:
Name picBooks
Image Books.wmf (in VCSDB\Code\Class 7\Example 7-

1 folder)
SizeMode StretchImage
Visible False

2. Add this line at the top of the code window:

using System.Drawing.Printing;

The picture box will provide a graphic to print on the database report. My
form looks like this:

3. Put this code in the btnPrintRecord_Click event:

private void btnPrintRecord_Click(object sender, EventArgs e)
{

// Declare the document
PrintDocument recordDocument;
// Create the document and name it
recordDocument = new PrintDocument();
recordDocument.DocumentName = "Titles Record";
// Add code handler
recordDocument.PrintPage += new

PrintPageEventHandler(this.PrintRecordPage);
// Print document
recordDocument.Print();
// Dispose of document when done printing
recordDocument.Dispose();

}

This code sets up the PrintDocument object (recordDocument) to print
using the information in the PrintRecordPage method.

4. Add this code to the PrintRecordPage event method:

private void PrintRecordPage(object sender,
PrintPageEventArgs e)
{

// print graphic and heading (1 inch in height)
Pen myPen = new Pen(Color.Black, 3);
e.Graphics.DrawRectangle(myPen, e.MarginBounds.Left,

e.MarginBounds.Top, e.MarginBounds.Width, 100);
e.Graphics.DrawImage(picBooks.Image, e.MarginBounds.Left

+ 10, e.MarginBounds.Top + 10, 80, 80);
// print heading
string s = "BOOKS DATABASE";
Font myFont = new Font("Arial", 24, FontStyle.Bold);
SizeF sSize = e.Graphics.MeasureString(s, myFont);
e.Graphics.DrawString(s, myFont, Brushes.Black,

e.MarginBounds.Left + 100 + Convert.ToInt32(0.5 *
(e.MarginBounds.Width - 100 - sSize.Width)),
e.MarginBounds.Top + Convert.ToInt32(0.5 * (100 -
sSize.Height)));

myFont = new Font("Arial", 12, FontStyle.Regular);
int y = 300;
int dy = Convert.ToInt32(e.Graphics.MeasureString("S",
myFont).Height);
// print title
e.Graphics.DrawString("Title: " + txtTitle.Text, myFont,

Brushes.Black, e.MarginBounds.Left, y);
// print authors
y += 2 * dy;

e.Graphics.DrawString("Author(s): ", myFont,
Brushes.Black, e.MarginBounds.Left, y);

int x = e.MarginBounds.Left +
Convert.ToInt32(e.Graphics.MeasureString("Author(s): ",
myFont).Width);

if (ISBNAuthorsTable.Rows.Count != 0)
{

for (int i = 0; i < ISBNAuthorsTable.Rows.Count; i++)
{

e.Graphics.DrawString(authorsCombo[i].Text, myFont,
Brushes.Black, x, y);
y += dy;

}
}
else
{

e.Graphics.DrawString("None", myFont, Brushes.Black, x,
y);
y += dy;

}
x = e.MarginBounds.Left;
y += dy;
// Print other fields
e.Graphics.DrawString("ISBN: " + txtISBN.Text,

myFont, Brushes.Black, x, y);
y += 2 * dy;
e.Graphics.DrawString("Year Published: " + txtYear.Text,

myFont, Brushes.Black, x, y);
y += 2 * dy;
e.Graphics.DrawString("Publisher: " + cboPublisher.Text,

myFont, Brushes.Black, x, y);
y += 2 * dy;
e.Graphics.DrawString("Description: " + txtDescription.Text,

myFont, Brushes.Black, x, y);
y += 2 * dy;
e.Graphics.DrawString("Notes: " + txtNotes.Text,

myFont, Brushes.Black, x, y);
y += 2 * dy;
e.Graphics.DrawString("Subject: " + txtSubject.Text,

myFont, Brushes.Black, x, y);
y += 2 * dy;
e.Graphics.DrawString("Comments: " + txtComments.Text,

myFont, Brushes.Black, x, y);
e.HasMorePages = false;

}

Yes, this is a lot of code, but you should see that it is very easy to follow
what’s going on. First a header is printed within a rectangle (the width of
the page margins). The DrawImage method puts the graphic in the header.
Every field is printed in sequence. We determine position and print the
field. Note how MeasureString is used to position the heading and line up
the author names. The numbers I used in the above code were determined
by trial-and-error, something you do a lot with the PrintDocument object.

5. Save (saved in Example 7-1 folder in VCSDB\Code\Class 7 folder)
and run the application. Select a title using the navigation buttons.
Here’s one I picked:

Click Print Record. Your printer should start making noise and a page
will pop out. Here’s the top of the page printed for the displayed record:

As mentioned, you can add a PrintPreviewDialog control to this
application to view the page before printing (we’ll use one in the next
example). That’s how I got the above graphic. Try it if you are
adventurous.

Example 7-1

Using SQL Server Databases
Make the same changes to the SQL Server version of Example 6-9.

Example 7-2

Titles Listing
A single page document with one record is not that exciting. Let’s add the
capability of printing out every title in our database (including the first
author). This will be a very large printout, so we’ll use a
PrintPreviewDialog control to allow the user to decide just what to print.

1. Return to Example 7-1. Display the Titles form. Add a button and a
print preview dialog control to the project (the dialog control will be
below the form). Set these properties:

button1:
Name btnPrintTitles
Text Print &Titles

printPreviewDialog1:
Name dlgPreview

The form now looks like this:

2. Add these two lines in the form level declarations to store page number
information:

int pageNumber;
const int titlesPerPage = 45;

3. Put this code in the btnPrintTitles_Click event:

private void btnPrintTitles_Click(object sender, EventArgs e)
{

// Start printing process at first record
pageNumber = 1;
btnFirst.PerformClick();
PrintDocument titlesDocument;
// Create the document and name it
titlesDocument = new PrintDocument();
titlesDocument.DocumentName = "Titles Listing";

// Add code handler
titlesDocument.PrintPage += new

PrintPageEventHandler(this.PrintTitlesPage);
// Print document
dlgPreview.Document = titlesDocument;
dlgPreview.ShowDialog();
// Dispose of document when done printing
titlesDocument.Dispose();

}

This code sets up the PrintDocument object (titlesDocument) to print
using the information in the PrintTitlesPage method. The document
object is opened with the print preview dialog control (dlgPreview).

6. Add this code to the PrintTitlesPage event method:

private void PrintTitlesPage(object sender,
PrintPageEventArgs e)
{

// here you decide what goes on each page and draw it there
// print headings
Font myFont = new Font("Courier New", 14,

FontStyle.Bold);
e.Graphics.DrawString("Titles - Page " +

pageNumber.ToString(), myFont, Brushes.Black,
e.MarginBounds.Left,
e.MarginBounds.Top);

myFont = new Font("Courier New", 12,
FontStyle.Underline);

int y = Convert.ToInt32(e.MarginBounds.Top + 50);
e.Graphics.DrawString("Title", myFont, Brushes.Black,

e.MarginBounds.Left, y);
e.Graphics.DrawString("Author", myFont, Brushes.Black,

e.MarginBounds.Left + Convert.ToInt32(0.6 *
(e.MarginBounds.Width)), y);

y += Convert.ToInt32(2 * myFont.GetHeight());
myFont = new Font("Courier New", 12, FontStyle.Regular);
int iEnd = titlesPerPage * pageNumber;
if (iEnd > titlesTable.Rows.Count)
{

iEnd = titlesTable.Rows.Count;
e.HasMorePages = false;

}
else
{

e.HasMorePages = true;
}
for (int i = 1 + titlesPerPage * (pageNumber - 1); i <= iEnd; i++)
{

// programmatically move through all the records
if (txtTitle.Text.Length < 35)
{

e.Graphics.DrawString(txtTitle.Text, myFont,
Brushes.Black, e.MarginBounds.Left, y);

}
else
{

e.Graphics.DrawString(txtTitle.Text.Substring(0, 35),
myFont, Brushes.Black, e.MarginBounds.Left, y);

}
if (cboAuthor1.Text.Length < 20)
{

e.Graphics.DrawString(cboAuthor1.Text, myFont,
Brushes.Black, e.MarginBounds.Left + Convert.ToInt32(0.6 *
(e.MarginBounds.Width)), y);

}
else
{

e.Graphics.DrawString(cboAuthor1.Text.Substring(0,
20),

myFont, Brushes.Black, e.MarginBounds.Left +
Convert.ToInt32(0.6 *
(e.MarginBounds.Width)), y);

}
btnNext.PerformClick();
y += Convert.ToInt32(myFont.GetHeight());

}
if (e.HasMorePages)

pageNumber++;
else

pageNumber = 1;
}

This code puts a header on each page. It programmatically moves through
all the records (by simulated clicks on the btnNext button). As control
moves through the records, the corresponding title and author values are
printed (they are truncated using the Substring method so they fit on a
line). When done, we need to reset pageNumber to 1 to allow for correct
printing (if you really want to print out all these pages). If we didn’t do
this, only the last page would print.

7. Save (saved in Example 7-2 folder in VCSDB\Code\Class 7 folder)
and run the application. Click Print Titles and sit back. You should see
a status box indicating progress:

It would take a while to wait for all pages (nearly 200 of them!) to appear
in the preview control. At some point, click Cancel.

The pages can be previewed in the displayed control. Here’s the fifth page:

The PrintDocument object, with a need to programmatically move
through all the records, slows us down. You could let the user somehow
limit how many pages to print. We’ll look at a way to do that in the final
example.

Example 7-2

Using SQL Server Databases
Make the same changes to the SQL Server version of the project.

Example 7-3

Book Publishers Listing
For more practice in developing database reports and designing Visual C#
interfaces, we build a database report for the Publishers table in the books
database. This will be a multiple page report listing publisher name and
mailing address information. The following fields will be in the report for
each publisher:

Name
Address
City
State
Zip

Each page will have multiple publishers (seven to a page). Since this is a
large table (over 700 records), the user will be able to limit the number of
available printed records by specifying the first letter of the Publisher
name.

User Interface
The interface we build for the book publishers listing will be simple,
consisting of twenty-seven buttons (each representing a single letter of the
alphabet). Wait, you say, there are only 26 letters in the alphabet! You’re
right. The 27th button will be used for publisher names beginning with non-
alphabetic characters. When the user clicks a button, the application will
display the publisher pages in a print preview control. Then, the user can
choose to print any, or all, pages. The finished interface will be built in
code. Let’s do it.

1. Start a new Visual C# application with just a form and a print preview
dialog control. Set these properties:

Form1:
Name frmPubs
BorderStyle FixedSingle
StartPosition CenterScreen
Text Book Publishers Listing

printPreviewDialog1:
Name dlgPreview

Size the form so it looks similar to this:

2. Use this code in the frmPubs_Load method:

private void frmPubs_Load(object sender, EventArgs e)
{

// Build interface
Button[] btnLetter = new Button[27];
int l = 0;
int w = Convert.ToInt32(this.ClientRectangle.Width / 3);
int t = 0;
int h = Convert.ToInt32(this.ClientRectangle.Height / 9);
// resize form to fit buttons exactly
this.ClientSize = new Size(3 * w, 9 * h);
for (int i = 0; i < 27; i++)
{

btnLetter[i] = new Button();
btnLetter[i].Name = i.ToString();
btnLetter[i].Left = l;
btnLetter[i].Width = w;
btnLetter[i].Top = t;
btnLetter[i].Height = h;
btnLetter[i].Text = (char) (i + 65) + " Publishers";
this.Controls.Add(btnLetter[i]);
t += h;

if (i == 8 || i == 17)
{

l += w;
t = 0;

}
}
btnLetter[26].Text = "Other Publishers";

}

This code creates the needed buttons and places them on the form
(computing the button width and height based on form size; there are three
rows of buttons with nine buttons in each row). It also places the proper
Text property on each button. The buttons are given very simple numeric
names to allow easy identification in later code.

3. Save the application (saved in Example 7-3 folder in
VCSDB\Code\Class 7 folder). Run it and you’ll see the buttons appear
as they should. My form at run-time looks like this:

This completes the interface framework. Notice this is a cute little way to
get a letter input from a user. You may find other applications where
similar interfaces may be useful.

Database Connection and Printing
Now, we’ll connect to the Publishers table in BooksDB.accdb and use the
PrintDocument object to print the Publishers database report.

1. Add these lines at top of the code window:

using System.Data.OleDb;
using System.Drawing.Printing;

2. Add these lines in the form level declarations to declare the needed data
objects and establish print parameters:

OleDbConnection booksConnection;
OleDbCommand publishersCommand;
OleDbDataAdapter publishersAdapter;
DataTable publishersTable;
int pageNumber;
const int recordsPerPage = 6;

3. Add the shaded code to the frmPubs_Load method to attach the
buttons to a Click event method (btnLetter_Click) and to open the
books database:

private void frmPubs_Load(object sender, EventArgs e)
{

// Build interface
Button[] btnLetter = new Button[27];
int l = 0;
int w = Convert.ToInt32(this.ClientRectangle.Width / 3);
int t = 0;
int h = Convert.ToInt32(this.ClientRectangle.Height / 9);
// resize form to fit buttons exactly

this.ClientSize = new Size(3 * w, 9 * h);
for (int i = 0; i < 27; i++)
{

btnLetter[i] = new Button();
btnLetter[i].Name = i.ToString();
btnLetter[i].Left = l;
btnLetter[i].Width = w;
btnLetter[i].Top = t;
btnLetter[i].Height = h;
btnLetter[i].Text = (char) (i + 65) + " Publishers";
this.Controls.Add(btnLetter[i]);
btnLetter[i].Click += new

EventHandler(this.btnLetter_Click);
t += h;
if (i == 8 || i == 17)
{

l += w;
t = 0;

}
}
btnLetter[26].Text = "Other Publishers";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\BooksDB.accdb");

booksConnection.Open();
}

4. Add this code to the frmPubs_FormClosing event to dispose of the
data objects:

private void frmPubs_FormClosing(object sender,
FormClosingEventArgs e)
{

// dispose of objects
booksConnection.Close();
booksConnection.Dispose();
publishersCommand.Dispose();
publishersAdapter.Dispose();
publishersTable.Dispose();

}

5. Add this code to the btnLetter_Click event method (handles a click on
any of the 27 buttons):

private void btnLetter_Click(object sender, EventArgs e)
{

Button whichButton = (Button) sender;
// Retrieve records
string sql = "SELECT * FROM Publishers ";
int i = Convert.ToInt32(whichButton.Name);
if (i >= 0 && i <= 24) // A to Y
{

sql += "WHERE Name >= '" + (char) (i + 65) + "' AND
Name < '" + (char) (i + 65 + 1) + "'";

}
else if (i == 25) // Z
{

sql += "WHERE Name >= 'Z'";
}
else // Other
{

sql += "WHERE Name < 'A'";
}
sql += " ORDER BY Name";
publishersCommand = new OleDbCommand(sql,

booksConnection);
// establish data adapter/data table

publishersAdapter = new OleDbDataAdapter();
publishersAdapter.SelectCommand = publishersCommand;
publishersTable = new DataTable();
publishersAdapter.Fill(publishersTable);
// set up printdocument
PrintDocument publishersDocument;
// Create the document and name it
publishersDocument = new PrintDocument();
publishersDocument.DocumentName = "Publishers Listing";
// Add code handler
publishersDocument.PrintPage += new

PrintPageEventHandler(this.PrintPublishersPage);
// Print document
pageNumber = 1;
dlgPreview.Document = publishersDocument;
dlgPreview.ShowDialog();
// Dispose of object when done printing
publishersDocument.Dispose();

}

This code forms a SQL statement based on the button clicked. For
example, if the user clicks ‘M Publishers’, the SQL statement formed is:

SQL = "SELECT * FROM Publishers WHERE Name >= 'M' AND
Name < 'N' ORDER BY Name"

The data table object (publishersTable) containing the corresponding
records is formed. This is the table that provides the printed results in
publishersDocument.

6. Add this code to the PrintPublishersPage general method.

private void PrintPublishersPage(object sender,
PrintPageEventArgs e)
{

// print headings
Font myFont = new Font("Arial", 18, FontStyle.Bold);
int y = Convert.ToInt32(e.MarginBounds.Top);
e.Graphics.DrawString("Book Publishers Listing - " +

DateTime.Now.ToString(), myFont, Brushes.Black,
e.MarginBounds.Left, y);

y += Convert.ToInt32(myFont.GetHeight());
e.Graphics.DrawString("Page " + pageNumber.ToString(),

myFont, Brushes.Black, e.MarginBounds.Left, y);
y += Convert.ToInt32(myFont.GetHeight()) + 10;
e.Graphics.DrawLine(Pens.Black, e.MarginBounds.Left, y,

e.MarginBounds.Right, y);
y += Convert.ToInt32(myFont.GetHeight());
myFont = new Font("Courier new", 12, FontStyle.Regular);
int iEnd = recordsPerPage * pageNumber;
if (iEnd > publishersTable.Rows.Count)
{

iEnd = publishersTable.Rows.Count;
e.HasMorePages = false;

}
else
{

e.HasMorePages = true;
}
for (int i = recordsPerPage * (pageNumber - 1); i < iEnd; i++)
{

// display current record
e.Graphics.DrawString("Publisher: " +

publishersTable.Rows[i]["Name"].ToString(), myFont,
Brushes.Black, e.MarginBounds.Left, y);

y += Convert.ToInt32(myFont.GetHeight());
e.Graphics.DrawString("Address: " +

publishersTable.Rows[i]["Address"].ToString(), myFont,

Brushes.Black, e.MarginBounds.Left, y);
y += Convert.ToInt32(myFont.GetHeight());
e.Graphics.DrawString("City: " +

publishersTable.Rows[i]["City"].ToString(), myFont,
Brushes.Black, e.MarginBounds.Left, y);

y += Convert.ToInt32(myFont.GetHeight());
e.Graphics.DrawString("State: " +

publishersTable.Rows[i]["State"].ToString(), myFont,
Brushes.Black, e.MarginBounds.Left, y);

y += Convert.ToInt32(myFont.GetHeight());
e.Graphics.DrawString("Zip: " +

publishersTable.Rows[i]["Zip"].ToString(), myFont,
Brushes.Black, e.MarginBounds.Left, y);

y += Convert.ToInt32(myFont.GetHeight());
y += 2 * Convert.ToInt32(myFont.GetHeight());

}
if (e.HasMorePages)

pageNumber++;
else

pageNumber = 1;
}

Here, we print some header information, then we cycle through the
records, placing recordsPerPage entries on each page. You should be able
to identify what is going on in this code. Again, when done, we reset
pageNumber to 1 to allow for correct printing (if desired).

7. Save (saved in Example 7-3 folder in VCSDB\Code\Class 7 folder)
and run the application. Click M Publishers – 11 pages should appear:

Try printing some records if you like.

Example 7-3

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the books database is SQLBooksDB.mdf.
Copy SQLBooksDB.mdf to your working directory

2. Use this using statement:

using System.Data.SqlClient;

3. Change all instances of OleDbConnection to SqlConnection
Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

4. Use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS;
AttachDbFilename=c:\\VCSDB\\Working\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

Other Approaches to Database
Reports
Though straightforward, using the PrintDocument object for developing
database reports is tedious and the resulting print process is, at times, slow.
There are two other possibilities available for building reports you might
want to consider.

Visual C# has a built-in database reporting capability. The ReportViewer
works with the data objects to build reports with a graphical interface. Its
capabilities are excellent, with future upgrades and support guaranteed.

CrystalReportViewer is a third-party product that generates data reports
using a structured system. CrystalReportViewer is included with Visual
C#. CrystalReportViewer provides extensive connections to database
structure. The big disadvantage to CrystalReportViewer is its complexity.
And, there’s the question of support. If it is not included with future Visual
C# upgrades, you would need to purchase a copy to support your legacy
code.

The internet offers several tutorials for using ReportViewer and
CrystalReportViewer. We suggest you look into these other tools if you
are interested.

Summary
In this chapter, we have looked using the Visual C# PrintDocument
object for developing database reports.

Using the PrintDocument object is easy and doesn’t require any
knowledge beyond Visual C#. But, lots of code is required and
performance is slow for large databases, such as our books database.

We will see more examples of database reports in Chapter 10.

8
Distributing a Database Application

Review and Preview
At this point in the course, you have the skills to create a complete
database management system, including printed reports. It’s time to share
your capabilities and products with others. The applications you have built
have been executed within the Visual C# environment.

In this chapter, you learn the steps of developing a stand-alone application
that can be run on any Windows-based machine – even machines without
Visual C#.

Several topics are covered: accessing database files in code, adding an icon
to an application, creating a stand-alone executable, and creating a
distribution package (which can be distributed via CD-ROM or
downloaded files).

Accessing Database Files in Code
When we develop a Visual C# application, all files used (including project,
form, code and database files) are saved in directories (folders) we specify
in our computing environment. To distribute our applications, we need to
make them independent of the directory structure used. A first step in
achieving this independence is to delete any directory structure used within
our code.

In these notes, we have placed database files in our working directory.
And, we have ‘hard-wired’ that location in code when we develop the
connection object. We can’t expect a user to be so kind as to place their
copy of the database in a directory with the same path name we use. We
need some way to determine database location. And, once we know this
location, we need to use that location to open the database in code. That is,
we must delete the ‘hard-wiring’ we have been using.

We look at two ways of determining the location of a database file: (1)
placing the database in the application directory and (2) allowing the user
to specify the location using an open file dialog box. Once location is
known, we look at how to open the database (and establish associated
connection objects tables) in Visual C# code.

Important: In each case, do not delete directory structure from your
application until you are sure it works in your design environment. Then,
make the changes provided in these notes to properly locate and open
database files in code.

Database File in Application Path
The easiest way to solve the problem of finding a database file is to place
it in the same path (directory) as the application itself. That directory is the
Bin\Debug folder in a project, specified by Application.StartupPath. We
have used this before to specify the location of help files needed by an
application.

Access Database:

To create a connection object (myConnection) connected to an Access
database (myDataBase.accdb) located in the application folder, we would
use:

myConnection = new
OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath +
"\\myDataBase.accdb");

Everything else in the code remains the same. It’s that easy. The additional
slash (\\) is needed because the Application.StartupPath property does
not have a terminating slash. You do need to remember to copy your
database to the proper folder.

SQL Server Database:

To create a connection object (myConnection) connected to an Access
database (mySQLDataBase.mdf) located in the application folder, we
would use:

myConnection = new SqlConnection("Data Source=SQLInstance;
AttachDbFilename= " + Application.StartupPath +
"\\mySQLDataBase.mdf; Integrated Security=True; Connect
Timeout=30; User Instance=True");

where SQLInstance is the name of your SQL Server instance (set when

installed; if using default SQL Server Express settings, name is
.\\SQLEXPRESS). Everything else in the code remains the same. It’s that
easy. The additional slash (\\) is needed because the
Application.StartupPath property does not have a terminating slash. You
do need to remember to copy your database to the proper folder.

Example 8-1

Opening Database Files in
Application Directory

In this example, we will modify the Books Database Management System
(including the Titles, Authors, and Publishers input forms) developed in
Chapter 6 and modified in Chapter 7, to open the books database file from
the application directory. These modifications will make our application
independent of the directories we used to build the application. This is a
needed step to make our application distributable

1. Open the latest version of the books database management system in
Example 7-2. Place a working copy of BooksDB.accdb into the
Bin\Debug folder for the application.

2. Make the Publishers form active. In the frmPublishers_Load method,
make the shaded modification:

private void frmPublishers_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpPublishers.HelpNamespace = Application.StartupPath +

"\\books.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\BooksDB.accdb");

booksConnection.Open();
// establish command object
publishersCommand = new OleDbCommand("SELECT *

FROM
Publishers ORDER BY Name", booksConnection);

.

.
}

This removes the directory dependency from the code.

3. Save application (saved in the Example 8-1 folder in
VCSDB\Code\Class 8 folder) and run the application. When the Titles
form appears, click the Publishers button and make sure the database
file opens properly. Stop the application.

4. Make the Authors form active. In the frmAuthors_Load method,
make the same shaded modification:

private void frmAuthors_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpAuthors.HelpNamespace = Application.StartupPath +

"\\books.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\BooksDB.accdb");

booksConnection.Open();
// establish command object
authorsCommand = new OleDbCommand("Select * from

Authors ORDER BY Author", booksConnection);
.
.

}

5. Save and run the application. When the Titles form appears, click the

Authors button and make sure the database file opens properly. Stop
the application.

6. Finally, make the Titles form active and make the same change to the
frmTitles_Load event method:

private void frmTitles_Load(object sender, EventArgs e)
{

try
{

// point to help file
hlpBooks.HelpNamespace = Application.StartupPath +

"\\books.chm";
// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\BooksDB.accdb");

booksConnection.Open();
// establish command object
titlesCommand = new OleDbCommand("SELECT * FROM
Titles

ORDER BY Title", booksConnection);
.
.

}

7. Save and run the application (saved in the Example 8-1 folder in
VCSDB\Code\Class 8 folder) one last time. Operation should remain
the same as before. The only difference is the books database is now
assumed to be in the project’s startup folder. We have removed the
‘hard-wired’ directory structure used in program development.

Example 8-1

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. The SQL Server version of the books database is SQLBooksDB.mdf.
Place a working copy of SQLBooksDB.mdf into the Bin\Debug folder
for the application.

2. In each case, use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS; AttachDbFilename= " +
Application.StartupPath + "\\SQLBooksDB.mdf;
Integrated Security=True; Connect Timeout=30;
User Instance=True");

Database File Location with OpenFile
Dialog Control
An alternate to placing the database file in the application directory is to
allow the user to tell us where the database is. We actually do this a lot. An
example was referred to way back in Chapter 5, where we first looked at
the open file dialog control. The example we used was a schoolteacher
using a database application to keep track of grades. The teacher would
have database files for each class. When the application starts, the teacher
needs to specify which database file is to be opened and where it is
located. The Visual C# open file dialog control is perfect for this use.

We need to open the database file before generate any other data objects
and the associated data bound controls. Hence, the best place to use the
open file dialog control is in the application’s form Load method. The user
chooses the database file at this point. This selected file is then used to
establish the connection object used by the other data objects.

Here is a code segment the displays an open file dialog control (dlgOpen).
If the user clicks OK, the connection object (myConnection) is created
using the selected file. If the user clicks Cancel, nothing happens. In this
case, you would need code to decide what to do (continue, try again,
abort):

Access Database:

if (dlgOpen.ShowDialog() == DialogResult.OK)
{

myConnection = new
OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + dlgOpen.FileName);
}
else
{

// do something if user clicks Cancel

}

SQL Server Database:

if (dlgOpen.ShowDialog() == DialogResult.OK)
{

myConnection = new SqlConnection("Data
Source=SQLInstance; AttachDbFilename= " + dlgOpen.FileName
+ "; Integrated Security=True; Connect Timeout=30; User
Instance=True");
}
else
{

// do something if user clicks Cancel
}

One other thing to consider. What if our application requires a database
with the structure of the books database, but the user selects some other
database that our application can’t use? This is a place where error
trapping code (using a try block) will come in handy. When we try to open
the database and create the data tables, errors will fly! Based on error
codes, we relay this information to the user and give them another chance.

Example 8-2

Opening Database Files with
OpenFile Dialog Control

We build a little example to illustrate the use of the open file dialog control
to open a database file. We will open the BooksDB.accdb file and display
the Titles table.

1. Start a new application. Add a data grid view and an open file dialog
control. Set these properties:

Form1:
Name frmTitles
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Titles Table

dataGridView1:
Name grdTitles

openFileDialog1:
Name dlgOpen
FileName [blank]
Filter Access Databases (*.accdb)|*.accdb

The finished form looks like this:

Below the form is:

2. Add this line at the top of the code window:

using System.Data.OleDb;

3. Add these form level declarations to declare data objects:

OleDbConnection booksConnection;
OleDbCommand titlesCommand;
OleDbDataAdapter titlesAdapter;
DataTable titlesTable;

4. Dispose of these objects in the frmTitles_FormClosing method:

private void frmTitles_FormClosing(object sender,
FormClosingEventArgs e)
{

booksConnection.Dispose();
titlesCommand.Dispose();
titlesAdapter.Dispose();

titlesTable.Dispose();
}

5. The crucial code is in the frmTitles_Load event method:

private void frmTitles_Load(object sender, EventArgs e)
{

if (dlgOpen.ShowDialog() == DialogResult.OK)
{

try
{

// connect to books database
booksConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + dlgOpen.FileName); booksConnection.Open();

// establish command object
titlesCommand = new OleDbCommand("Select * from

Titles ORDER BY Title", booksConnection);
// establish data adapter/data table
titlesAdapter = new OleDbDataAdapter();
titlesAdapter.SelectCommand = titlesCommand;
titlesTable = new DataTable();
titlesAdapter.Fill(titlesTable);
// bind grid to data table
grdTitles.DataSource = titlesTable;

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error establishing
Titles table.", MessageBoxButtons.OK,
MessageBoxIcon.Error);

return;
}

}

else
{

MessageBox.Show("No file selected", "Program
stopping", MessageBoxButtons.OK,
MessageBoxIcon.Information);

this.Close();
}

}

In this code, we obtain the database filename, create the needed data
objects and bind the grid to the resulting data table object (all fields in the
Titles table). If the user doesn’t select a file, a message box appears. If an
error occurs, error trapping prints a message.

6. Save (saved in the Example 8-2 folder in VCSDB\Code\Class 8 folder)
and run the application. The open file dialog box will appear:

Note the Filter property is set so only Access databases (accdb files) can
be opened. Find your working copy of BooksDB.accdb and click Open.
The file is opened and the data grid filled with the Titles table:

7. Stop the application and run it again. When the open file dialog box
appears, click Cancel and you will see:

This is one option if a file is not selected – just stop the program. You
may want to give the user another chance.

8. Re-run the application, but this time select some other database file (not
a books database, for example the NWindDB.accdb file). Click Open
and you should see:

The Titles table cannot be located. With this error, we would give the user
another try at locating a proper database file.

Example 8-2

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. Set these open file dialog properties:

openFileDialog1:
Name dlgOpen
FileName [blank]
Filter SQL Server Databases (*.mdf)|*.mdf

2. Use this using statement:

using System.Data.SqlClient;

3. Change all instances of OleDbConnection to SqlConnection
Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter

4. Use this connection object:

booksConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS; AttachDbFilename=" +
dlgOpen.FileName + "; Integrated Security=True; Connect
Timeout=30; User Instance=True");

Distribution of a Visual C# Database
Application
I bet you’re ready to show your friends and colleagues some of the
database applications you have built using Visual C#. Just give them a
copy of all your project files and databases, ask them to buy and install
Visual C# and learn how to open and run a project. Then, have them open
your project and run the application. I think you’ll agree this is asking a lot
of your friends, colleagues, and, ultimately, your user base. We need to
know how to run an application without Visual C#.

To run an application without Visual C#, you need to create an executable
version of the application. So, how is an executable created? A little secret
… Visual C# builds an executable version of an application every time we
run the application! The executable file is in the Bin\Debug folder. Open
the Bin\Debug folder for any project you have built and you’ll see a file
with your project name of type Application. For example, using Windows
Explorer to open the Bin\Debug folder for Example 8-1 shows:

Notice the database file (BooksDB.accdb) is there.

The file named Example 8-1.exe is the executable version of the
application. If I make sure Visual C# is not running and double-click this
file, the following appears:

Voila! The Books DBMS application is running outside of the Visual C#
IDE!

So distributing a Visual C# database application is as simple as giving
your user a copy of the executable file, having them place it in a folder on
their computer and double-clicking the file to run it? Maybe. This worked
on my computer (and will work on yours) because I have a very important
set of files known as the .NET Framework installed (they are installed
when Visual C# is installed). Every Visual C# application needs the .NET
Framework to be installed on the hosting computer. The .NET Framework
is central to Microsoft’s .NET initiative. It is an attempt to solve the
problem of first determining what language (and version) an application
was developed in and making sure the proper run-time files were installed.
The .NET Framework supports all Visual Studio languages, so it is the
only runtime software need by Visual Studio applications.

The next question is: how do you know if your user has the .NET
Framework installed on his or her computer? And, if they don’t, how can
you get it installed? These are difficult questions. For now, it is best to
assume your user does not have the .NET Framework on their computer. It
is new technology that will take a while to get disseminated. Once the

.NET Framework is included with new Windows operating systems, most
users will have the .NET Framework and it can probably be omitted from
any distribution package.

So, in addition to our application’s executable file, we also need to give a
potential user the Microsoft .NET Framework files and inform them how
to install and register these files on their computer. Things are getting
complicated. Further complications for application distribution are
inclusion and installation of database files, ancillary data files, graphics
files and configuration files. Fortunately, Visual C# offers help in
distributing, or deploying, applications.

Visual C# uses Setup Wizard for deploying applications. Setup Wizard
will identify all files needed by your application and bundle these files into
a Setup program. You distribute this program to your user base (usually
on a CD-ROM). Your user then runs the resulting Setup program. This
program will:

➢ Install the application (and all needed files) on the user’s computer.
➢ Add an entry to the user’s Start/Programs menu to allow

execution of your application.
➢ Add an icon to the user’s desktop to allow execution of your

application.

We’ll soon look at use of Setup Wizard to build a deployment package
for a Visual C# application. First, let’s quickly look at the topic of icons.

Application Icons
Notice there is an icon file that looks like a little, blank Windows form
associated with the application executable. And, notice that whenever you
design a form in the Visual C# IDE (and run it), a small icon appears in the
upper left hand corner of the form. Here’s the Titles form from our
DBMS:

Icons are used in several places in Visual C# applications: to represent
files in Windows Explorer, to represent programs in the Programs menu,
to represent programs on the desktop and to identify an application
removal tool. Icons are used throughout applications. The default icons are
ugly! We need the capability to change them.

Changing the icon connected to a form is simple. The idea is to assign a
unique icon to indicate the form’s function. To assign an icon, click on the
form’s Icon property in the properties window. Click on the ellipsis (...)
and a window that allows selection of icon files will appear. The icon file
you load must have the .ico filename extension and format.

A different icon can be assigned to the application. This will be the icon
that appears next to the executable file’s name in Windows Explorer, in
the Programs menu and on the desktop. To choose this icon, first make
sure the project file is highlighted in the Solution Explorer window of the
IDE. Choose the View menu item and select Property Pages. Select the
Application page and this window will appear:

The icon is selected in the Icon drop-down box. You can either choose an
icon already listed or click the ellipsis (…) that allows you to select an
icon using a dialog box. Once you choose an icon, two things will happen.
The icon will appear on the property pages and the icon file will be added
to your project’s folder. This will be seen in the Solution Explorer
window.

The Internet and other sources offer a wealth of icon files from which you
can choose an icon to assign to your form(s) and applications. But, it’s also
fun to design your own icon to add that personal touch.

Custom Icons
An icon is a special type of graphics file with an ico extension. It is a
picture with a specific size of 32 by 32 pixels. The internet has a wealth of
free icons you can download to your computer and use. Do a search on
‘free 32 x 32 ico files’. You will see a multitude of choices. One site we
suggest is:

http://www.softicons.com/toolbar-icons/32x32-free-design-icons-by-aha-
soft/

At such a site, you simply download the ico file to your computer and save
it.

It is possible to create your own icon using Visual Studio. To do this, you
need to understand use of the Microsoft Paint tool. We will show you
how to create a template for an icon and open and save it in Paint. To do
this, we assume you have some basic knowledge of using Paint. For more
details on how to use Paint, go to the internet and search for tutorials.

To create an icon for a particular project, in Solution Explorer, right-click
the project name, choose Add, then New Item. This window will appear:

http://www.softicons.com/toolbar-icons/32x32-free-design-icons-by-aha-soft

As shown, expand Common Items and choose General. Then, pick Icon
File. Name your icon and click Add.

A generic icon will open in the Microsoft Paint tool:

The icon is very small. Let’s make a few changes to make it visible and
editable. First, resize the image to 32 x 32 pixels. Then, use the
magnifying tool to make the image as large as possible. Finally, add a grid
to the graphic. When done, I see:

At this point, we can add any detail we need by setting pixels to particular
colors. Once done, the icon is saved by using the File menu. The icon will
be saved in your project file and can be used by your project. The icon file

(Icon1.ico in this case) is also listed in Solution Explorer:

Example 8-3

Visual C# Setup Wizard
As mentioned earlier, to allow someone else to install and run your Visual
C# database application requires more than just a simple transfer of the
executable file. Visual C# provides Setup Wizard that simplifies this task
of application deployment.

Note: Setup Wizard must be a part of your Visual Studio installation.
To download and install Setup Wizard, use the following link:

https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-
8797-c509fb8933b9

Setup Wizard will build a Setup program that lets the user install the
application (and other needed files) on their computer. At the same time,
Program menu entries, desktop icons and application removal programs
are placed on the user’s computer.

The best way to illustrate use of Setup Wizard is through an example. In
these notes, we will build a Setup program for our Books DBMS example.
Follow the example closely to see all steps involved. All results of this
example for an Access database will be found in the Example 8-3 and
Books DBMS folders of the VCSDB\Code\Class 8 folder. Let’s start.

This example uses the Access database (BooksDB.accdb). If using SQL
Server, use the SQL Server version of the project and follow the same
steps using the SQL Server database (SQLBooksDB.mdf).

Open the Books DBMS project (Example 8-1). Make sure books.chm
(the help file) and BooksDB.accdb (the database) are in the project
Bin\Debug folder. Attach an icon to the Titles form (one possible icon,
BOOKS.ICO, is included in the project folder). The form should look like
this with its new icon:

http://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9

Assign this same icon to the application using the steps mentioned earlier:

Setup Wizard is a separate project you add to your application solution.
Choose the File menu option, then New then Project. In the window that
appears, expand the Other Project Types, select Visual Studio Installer
and this window appears:

As shown, choose Setup Wizard on the right. Under Solution, choose
Add to Solution. Name the project Books DBMS and click OK. Notice I
have put the project folder in the VCSDB\Code\Class 8 folder.

The Setup Wizard will begin with Step 1 of 5.

Continue from step to step, providing the requested information. Here, just
click Next.

Step 2.

Choose Create a setup for a Windows application. Click Next.

Step 3.

Here you choose the files to install. The main one is the executable file
(known here as the primary output file). Place a check next to Primary
ouput from Example 8-3 and click Next.

Step 4.

Here you can add additional files with your deployment package. You
could specify ReadMe files, configuration files, help files, data files, sound
files, graphic files or any other files your application needs. Our
application needs two such files: the help file (books.chm) and the
database file (BooksDB.accdb).

Click Add. A dialog box will appear:

Navigate to the project’s Bin\Debug folder and select the two files as
shown.

Click Open. The two files should now appear in the window:

Move to the next step (click Next).

Step 5.

Click Finish to see the resulting File System:

We also want shortcuts to start the program both on the Desktop and the
Programs Menu. First, we do the Desktop shortcut. To do this, open the
Application Folder to see:

Right-click Primary output from … and choose Create Shortcut to
Primary output …. Cut the resulting shortcut from the Application
Folder and paste it into the User’s Desktop folder:

Rename the shortcut Books DBMS to yield

Lastly, we want to change the icon associated with the shortcut. This is a
little tricky. The steps are:

➢ Highlight the shortcut and choose the Icon property in the
Properties window

➢ Choose Browse.
➢ When the Icon dialog box appears, click Browse. You will see

As shown, look in the Application Folder and click Add File.

➢ Locate and select the icon file (there is one in the
VCSDB\Code\Class 8\Example 8-3 folder), then click OK. The
Icon window will appear:

Select the desired icon and click OK.

Next, follow nearly identical steps to put a shortcut in the User’s
Programs Menu folder. The Setup Wizard has completed its job.

Building the Setup Program
Now, let’s build the Setup program. In the Solution Explorer window,
right-click the Books DBMS project and choose Build from the menu.
After a short time, the Setup program and an msi (Microsoft Installer) file
will be written. They will be located in the executable folder of the Books
DBMS project folder (VCSDB\Code\Class 8\Books DBMS\Bin). The
Setup program is small. A look at the resulting directory shows:

Use some media (zip disk, CD-ROM or downloaded files) to distribute
these files your user base. Provide the user with the simple instruction to
run the Setup.exe program and installation will occur.

Installing a Visual C# Application
To install the program, simply run the Setup.exe program. These are the
same brief instructions you need to provide a user. Users have become
very familiar with installing software and running Setup type programs.
Let’s try the example just created and see what a nice installation interface
is provided. Double-click the Setup.exe program from Example 8-3 and
this introduction window should appear:

Click Next and you will be asked where you want the application installed.

After a few clicks, installation is complete and you will see:

After installing, look on your desktop. There should be an icon named
Books DBMS. Double-click that icon and the program will run. Similarly,
the program can be accessed by clicking Start on your taskbar, then
choosing All Apps. Click the Books DBMS entry and the program runs. I
think you’ll agree the installer does a nice job.

Summary
In this chapter, we gained the skills needed to be able to run a database
application outside the Visual C# design environment. Steps needed to
open a database file were outlined. Creation of an executable version of an
application was discussed, as was attaching a unique icon to each form.

The Visual C# Setup Wizard was introduced. The steps required to create
an application distribution package using the wizard were illustrated.

9
Database Design Considerations

Review and Preview
All work done in this course so far has involved using existing databases.
I’m sure you are intimately familiar with the books database by now!
Many times, as a database programmer, this may be the only task you are
involved in – building database management systems for so-called legacy
systems.

If, however, you embark on a new database project, suggested by others or
developed by yourself, you will need to design the database structure and
contents. In this chapter, we address some of the considerations you must
make in designing a database from scratch. We also look at available tools
for building databases.

Database Design
A key step in developing a database is proper design. If you take the time
to design your database properly, you will save yourself many headaches
in developing and maintaining the associated database management
system. We will follow several steps in database design:

1. Database modeling
2. Information requirements
3. Table requirements
4. Field requirements
5. Database implementation
6. Database testing
7. Design refinements

It is difficult to discuss database design philosophy in general. As we
discuss each of these steps, we will use, as an example, a modified version
of the database used by our company to track its product sales. We will
name this database KWSALES (for KIDware sales). This sample database
design should help guide you in any designs you take on. And, yes,
KIDware’s database management system is written entirely in Visual C# –
what else would we use? This brings up an interesting point. For a while,
we searched for a product to handle our sales invoicing, but couldn’t find a
product that did what we wanted at a price we wanted to pay. The solution
was to use our Visual C# skills to build the exact product we wanted. You
may find your Visual C# skills will help you out in a similar, future,
dilemma.

Database Modeling
Database modeling is the task of determining just what you want your
database to do. Is it a mailing list to contact clients, a complete sales
tracking system, a room reservation process or a school membership list?
Create some functional specifications for your database. It is best to write
all this information down to have a list to work from. And, such a list helps
in drawing up a schedule for task development.

A good place to start in modeling your database could be the existing
process for maintaining the same data. Many times, a database is
developed to replace a ‘less automatic’ method for data management. For
example, perhaps a small company has always tracked its sales using a
three-ring binder with columns to store all the data. This is just a ‘paper
and pencil’ version of a database table. Replacing an existing data
management process with a new automatic database is sometimes a
straightforward task. You simply model the existing process.

If you are creating a database for others to use, go talk to those people.
Ask them how they would like things to work. After all, these are the
people who have to be happy with your work, so including them early on
helps maximize those chances of happiness. See if they have a system to
replace or particular reports they need to produce. Ask lots of questions to
understand your user’s objectives.

In the KWSALES example we will use here, the database must contain all
information about each sale that comes into the company. We want to
know “who bought what and when they bought it.” We want to track
customer information and each order a particular customer makes. We
want to know what each customer bought. And, we would like to know
which products in our inventory are the most popular. Each of these
functional specifications determines what information is needed in the
database.

Information Requirements
After modeling your database requirements, you can begin to determine
what information is needed in the database. The end-result is a shopping
list of all information you want to store and have access to.

This may seem like a trivial step, but it’s one of the most important. You
have seen in your studies that a database is highly structured. This
structure is what allows us to efficiently process SQL queries and to find
information within the database. Once a database structure (tables, fields)
is defined, it is difficult to change. Hence, if you omit an important piece
of information from your database design, many times you have to throw
out all your work and start over to include the new information. Such
rework and modifications can be costly.

So, take lots of time in planning your information requirements. Check
with those who will use the database to make sure you haven’t forgotten
anything. Is there an existing information model? With new databases, I
will sometimes allow for a few ‘empty fields’ that can be used for account
for possible omissions. Yes, I know this is a waste of storage space if they
are never used, but they have also saved me lots of headaches.

For the KWSALES database, we had a model to work with - our previous
sales tracking system written using a predecessor to Visual C#. The basic
information needed in this database is:

∘ Customer Name
∘ Customer Mailing Address
∘ Customer Phone
∘ Order Date
∘ Product(s) Ordered

Realize that your first set of information requirements may lead to
additional requirements as you continue your database design. That is,
your information list will grow. As an example, in the KWSALES
database, when database fields are specified, the Customer Name will be
separated into two pieces of information – a first name and a last name.

The Customer Address will be broken into City, State, and Zip. When the
database design is complete, the information list should also be complete
and separated into its smallest components. So this first set of requirements
can be general, but it must be complete. If, at a later time, we decide we
also need the customer’s e-mail address, a redesign would be necessary.

Table Requirements
At this point in the database design process, we know what we want the
database to do and what general information is to be in the database. Now,
we begin the detailed design of deciding what tables and fields will be
available in the database. In this section, we address the problem of
separating the information into tables.

Recall a table is a collection of information related to a particular topic.
Databases use multiple tables to minimize and, hopefully eliminate,
redundant data. The books database (BooksDB.accdb) we have been using
is a good example of the separation of information into tables. The topics
used by BooksDB.accdb for separation are: Titles, Authors, and
Publishers. These are very logical groupings. And, most of the time, a
grouping of information into tables is very logical. You just have to realize
what the logic is!

The process of separating database information into individual tables is
known as database normalization. The ultimate goal of proper
normalization is to try to make sure each piece of information in the
database appears just once. This is just a goal, not a requirement. Such
complete elimination of redundancies is not always practical or desirable.
Let’s see how normalization works with the KWSALES database.

In KWSALES, for each sale, we need information about the buyer and
details on what the buyer purchased. If we put all this information in a
single table (a flat database), there would be a lot of repeated data. For
example, if a particular buyer had ordered with our company ten times,
that buyer’s contact information would be repeated 10 times. If a particular
product were purchased 1,000 times, that product’s detailed description
information would be repeated 1,000 times!

Repeated, or redundant, data presents two problems. The first is wasted
space. The second is a problem of accuracy and maintenance. If a
product’s price changed, we would have to make sure we changed this
pricing information everywhere it is listed in the single table. This presents
a real potential for error – it would be easy to miss several entries. The

solution to the redundancy problem is to place like information in like
tables.

For KWSALES, a logical grouping would be to put all the customer
information in a unique table. We’ll call that table Customers. Here, each
record in the table will have information about a single KIDware customer.
This way, if a customer’s phone number changes, we only need to change
it in one location. A second table will be named Orders. Each record in
this table will represent a single KIDware order. And, a third logical
grouping is Products. This table contains information describing each
product in our inventory. At this point, our database design is:

A couple of words on naming conventions. In our database experience, we
have found that it is best to have no embedded spaces in table or field
names. They only cause problems. If you like the readability of multi-word
names, use the underscore character (_) to separate the words, rather than
spaces. Recall such characters were used for table and field names in the
books database.

Also table and field names cannot duplicate reserved words in Visual C#,
ADO .NET, SQL or Access. Try to use unique sounding names. Names
I’ve used and encountered problems with (because they are reserved) are:
Number, Date, Size. Don’t use such simple names!

Once database information is separated into tables, we need a way to relate
one table to another. Data keys provide these relationships. Each entry (or
record) in a table will usually have a unique identification value (a primary
key). And then, foreign keys in other tables can reference primary keys. In

the Customers table, we will have a CustomerID field, in the Orders
table, an OrderID field, and in the Products table, a ProductID field. The
Orders table will also have a CustomerID field (a foreign key) so we can
associate an order with a customer.

In database terminology, we call the Orders table a child table and the
Customers table a parent table. A child table shares common information
that is stored in the parent table. Parent table information is specified once.
Then, the child table can refer to a particular parent table record as many
times as necessary, saving storage.

Another table used in database normalization is a lookup table. An
example of a lookup table would be a list of zip codes related to the
corresponding city and state. In such a case, once the user entered a valid
zip code, the city and state would appear on the data input form, saving the
user typing steps, and saving you validation steps. Lookup tables are also
used as bridges between database tables, relating foreign keys. Remember
the Title_Author table in BooksDB.accdb. It is a lookup table. It relates
ISBN values (corresponding to a book title) to a particular author (Au_ID).
This table acts as a bridge between the Titles table and the Authors table.
We will use a lookup table in KWSALES to bridge the Orders and
Products table. This table will be called Purchases. This table will relate
each order with the products purchased. The completed table structure for
KWSALES is then:

Notice table relationships are complete. We can move from one table to
another via the identified keys.

The next step in database design gets down to the details of deciding what
each data field should be.

Field Requirements
At this point in the database design process, we have specified, in general
terms, what information is to be stored in the database and have developed
the table structure. To relate the tables, we have defined the initial fields –
primary and foreign keys. Now, we need to determine what additional
fields are needed in the database so that all the required information is
available. Each field added to the database requires some thought.
Spending some time in properly defining the database fields will save you
lots of time and trouble when you design the database management
system.

Several questions should be answered in choosing fields for your database:

∘ Which table?
∘ Field name?
∘ Field type?
∘ Field size?
∘ Fixed or variable length field?

Before answering each of these questions about a field, you need to decide
what information the field will hold. Fields should break required database
information into the smallest desired units. For example, you should have
fields for both first and last names, not a single field for name. This makes
searching a database for a particular last name an easier task.

Let’s specify the fields for our KWSALES example and place them in
tables. The Customers table holds information on each particular
customer. In addition to the CustomerID field, the fields will be:
FirstName, LastName, Address, City, State, and Zip. The Orders table
will have one additional field, OrderDate. The Purchases table will have
one additional field, Quantity. Finally, the Products table will add a
Description field, a Price field, and a NumberSold field. The completed
table and field structure is:

We now address the other questions for each field.

Field Types
Each field in a database must have a defined type. This is similar to typing
variables in a Visual C# application. The field types are:

Field Type Description
Variable length text String that takes up as much space as needed.
Fixed length text String that takes up defined amount of space.
Date/Time Stores a date and/or a time (see Example 10-2

in Chapter 10 for specifics on this field type).
Integer Integer variable
Long Larger integer variable type
Single Single precision decimal number
Double Double precision decimal number
Currency Stores numbers with two decimal points
Yes/No True or False Boolean variable type
Memo Very large text field

Once your fields have been defined, it is usually a simple task to assign
data types. A good way to determine data type is to look at types other
databases use. This is especially important if you might ever need to
exchange data with another database. In these cases, you need to make
sure data types (especially string lengths) match.

There are some other considerations you should keep in mind when
defining fields. In particular, pay attention to which fields are primary
keys and foreign keys. We need to make sure primary keys have unique
values for proper multi-table relations. Another thing to remember is that
for quick and efficient searching of databases, indexes must be assigned
when defining the database. Knowing which fields will be searched on will
determine what indexes must be assigned.

Now, for our example database – KWSALES. These are the types used
for the fields in each table:

Table Field Type

Customers CustomerID Long
FirstName Text (40 Characters)
LastName Text (40 Characters)
Address Text (40 Characters)
City Text (40 Characters)
State Text (20 Characters)
Zip Text (10 Characters)

Orders OrderID Text (10 Characters)
CustomerID Long
OrderDate Date/Time

Purchases OrderID Text (10 Characters)
ProductID Text (10 Characters)
Quantity Integer

Products ProductID Text (10 Characters)
Description Text (40 Characters)
Price Currency
NumberSold Integer

In this database, we recognize CustomerID, OrderID, and ProductID
will be primary keys and searchable fields. In addition, we will search on
the customer’s LastName, a common query.

Null Values
Related to the concept of Field types is the idea of a null value. Whenever
a database is designed, the empty database is filled with null values (unless
you assign a default value or specify Null values are not allowed). We
looked at null values briefly way back in Chapter 4 when we studied the
use of SQL with databases.

Just what is a null value? It means a particular database field’s value is
unknown. A numeric field with a zero value is not null. A blank string
field is not null. An empty string is not null. Null means null!

As you progress in your database programming skills, you need to know
how to work with null values. Why? A major reason is that if you attempt
to modify a field that does not allow null values, the database engine will
reject the modification. We need techniques to identify null values and to
establish null values. The Visual C# constant DBNull.Value can be used
to see if a field is null or to set a variable to a null value.

Primary key fields can never be null. This is obvious. Any mathematical
functions performed on your data using SQL aggregate functions will
ignore null values. For example, if you are averaging a column of
numbers, any nulls will not be included. If you want to include the null
values in the average, they must be replaced by zeroes.

In the Weather Monitor example in Chapter 10, we will examine ways of
working with null values in a database.

Database Design Implementation
Once your database design is complete (or at least the preliminary design
is complete), you need to create the database. The method used to create
the database depends on the type of database you are building. In this
course, we have worked with Microsoft Access (ACE type) databases and
SQL Server databases. There are different ways to create such databases.

For an Access database, you can:

∘ Use Microsoft Access
∘ Use Visual C# ADOX data objects
∘ Use a third-party product (requiring purchase of that product)

Microsoft Access is the most widely used tool for creating ACE
databases. It has many powerful features, including drag and drop
interfaces. But, you need to purchase or own Access to use it. Fortunately,
most users of products like Visual C# also have Access. We will look at
how to create the KWSALES database using Access. It is also possible to
create an Access database using just Visual C# and extended ADO .NET
(ADOX) objects. We will show you how to use such objects to create the
KWSALES database.

For a SQL Server database, you can:

∘ Use Microsoft Visual Studio’s Server Explorer
∘ Use Visual C# and SQL
∘ Use a third-party product (requiring purchase of that product)

Notice you already have the tools needed to build a SQL Server database
since you have Visual Studio. We will create a SQL Server version of the
KWSALES database using Server Explorer. And, we’ll outline the steps
needed to create the same database using just Visual C# and SQL.

It is also possible to populate a database (add actual field values) at the
same time you design the database. We will not do that here – we only
create an empty database. It will be populated using a Visual C#

application in Chapter 10.

Building Databases with Microsoft
Access
To build a database using Microsoft Access, you obviously need to have
Access installed on your computer. This product is part of the Microsoft
Office Suite. If you don’t have Access or don’t want to use Access, skip
ahead to the notes on creating a database using Visual Basic.

As with many programs, the use of Access is best illustrated with an
example. Here, we use Access to build our KWSALES database. The file
will be named KWSalesDB.accdb. The process is straightforward. You
define a table and then the fields within each table.

Example 9-1

KWSALES Database with Microsoft
Access

In this example, we go through all the steps necessary to build the 4-table
KWSALES database using Microsoft Access. We will build each table
and add the associated data fields (along with any necessary keys and
indexes) individually. For reference, the table and field structure is:

In this example, we use Access 2007.

Getting Started
Start Access. When the program appears, click the Office button and
choose New. A screen with entries like this should appear:

Choose Blank Database. Choose the desired directory, name your
database KWSALES and click Create.

This window will appear, allowing us to design our KWSALES database
tables:

We follow the same steps for each table.

Customers Table
1. Click the View toolbar button and choose Design View. You will see:

Name the table Customers as shown. You will then be taken to design
view:

This is the grid used to define each field, so let’s look at all that’s here.
You supply a Field Name for the field and define its Data Type. A
special Data Type is AutoNumber. This is used for primary keys to
insure unique values. Other options (appear on the General tab) include
AllowZeroLength to allow an empty field and Required to make sure
a particular field has a value. Each of these options is directly related to
your database design.

2. The first field in the Customers table is CustomerID. Enter that for a
Field Name and select AutoNumber for Data Type. Continue adding
the other fields using these choices:

Name DataType FieldSize
FirstName Text 40
LastName Text 40
Address Text 40
City Text 40
State Text 20
Zip Text 10

Make all of the fields Required (we want to make sure we have a
complete address).

At this point, the design grid should look like this:

Now, we define the primary key and any indexes to allow quick
searching. CustomerID is a primary field. If a little key doesn’t appear
next to the CustomerID row, we need to put one there. Right-click the
CustomerID row and choose Primary Key. A small key now appears
next to that entry indicating it is a primary key. We want LastName to
be an index. Select the LastName row. On the General tab, set the
Indexed property to Yes (Duplicates OK). Here is the final table
structure:

3. The table definition is now complete. Click the close button (X) in the
upper right corner of the window. You will be asked to save the table:

Click Yes. You will be returned to the Access design window where
you will see the table has been added to the database:

You can now add the next table.

Orders Table
1. Click the Create tab then select the Table Design toolbar button. This

lets us create a new table in design view. Add the following fields:

Name DataType
OrderID Text (FieldSize = 10)
CustomerID Number (Long Integer, no default value)
OrderDate Date/Time

We will use Visual Basic code to make sure OrderID is a unique value
for each order (in Chapter 10). Make all fields Required.

2. Make the OrderID a primary key. Make the other two fields indexes
(allow repeating values). The resulting table structure is:

3. Close the design window and save the table as Orders. There are now
two tables in the database:

Purchases Table
1. Create another table in design view. Add the following fields:

Name DataType
OrderID Text (FieldSize = 10)
ProductID Text (FieldSize = 10)
Quantity Number (Integer, no default value)

Make only OrderID a Required field (we won’t make someone order
something!).

2. Add two indexes to the table, one for OrderID and one for ProductID.
Here is the resulting table:

3. Close the window. Save the table as Purchases. You will see this
message asking if you want to define a product key:

We don’t need a primary key in this table since it acts as a lookup table.
Click No.

There are now three tables in the KWSALES database:

Products Table
1. Create the final table in design view. Add the following fields:

Name DataType
ProductID Text (FieldSize = 10)
Description Text (FieldSize = 40)
Price Currency
NumberSold Number (Integer, no default value)

ProductID is our product SKU (and, I forget what SKU stands for), a
unique manufacturer serial number for each product. Make all fields
Required.

2. Make ProductID a primary key. Here is the resulting structure:

Close the window, saving the table as Products.

We now have all four tables needed by the KWSALES database:

Define Relationships
We have the four tables in the KWSALES database, but they are
independent entities. A last step is to define the relationships between
primary and/or foreign keys. Be aware you can only define relationships
between two fields if they are the same data type.

1. Select the Database Tools tab from the Access main menu, then choose
Relationships. The Show Table dialog will appear:

Select all the tables listed and click Add. Then close this dialog. The
four tables will appear in the Relationships window (the primary keys
are shown with little keys):

2. To relate a key from one table to the next, simply drag that key from one
table to the corresponding key in another table. For example, drag the
CustomerID (primary key) from the Customers table to CustomerID
(foreign key) in the Orders table. You will see:

Click Create and the link is formed:

3. Create two more links. Link OrderID (primary key) in the Orders table
to OrderID (foreign key) in the Purchases table. And, link ProductID
(foreign key) in the Purchases table to ProductID (primary key) in the
Products table. The Relationships window should now show:

All of the key relationships are clearly defined. Make sure to save these
when closing the window.

The definition of the KWSALES database is now complete. This version
of the database is saved as KWSalesDB.accdb in the VCSDB\Databases
folder. It is possible to add values to the tables at this point, if desired.
Simply open a table and fill the result grid with values. For example, if you
open the Customers table, you will see:

We will not populate the tables here. That will be done in code in Chapter
10.

Building SQL Server Databases with
Server Explorer
Microsoft Visual Studio can be used to build a SQL Server database. The
Server Explorer tool aids in this construction.

Like the Access version of KWSALES, building a SQL Server version
(named SQLKWSalesDB.mdf) is best illustrated with an example. Here,
we use Visual Studio to build our KWSALES database. You will notice
Server Explorer uses a different vocabulary for building a database. For
example, fields are called columns and many of the data types have
different names (varchar is used for a Text field). These differences
should be easy to follow.

Example 9-2

KWSALES Database with Server
Explorer

In this example, we go through all the steps necessary to build a SQL
Server version (SQLKWSalesDB.mdf) of the 4-table KWSALES
database using Microsoft Visual Studio. We will build each table and add
the associated data fields (along with any necessary keys and indexes)
individually. For reference, the table and field structure is:

Getting Started
1. Start Visual Studio. Bring up Server Explorer by choosing the View

menu option and selecting Server Explorer. Find this window:

Right-click Data Connections and choose Create New SQL Server
Database. This window appears:

Enter your Server name (your computer name followed by a backslash
and SQLEXPRESS). Enter SQLKWSalesDB for the New database

name and click OK.

2. The new database (I’ve expanded the connection to show included
folders) will appear in the Server Explorer window under Data
Connections:

For each table you want to create, right-click the Tables folder and
choose Add New Table. Once you do this, a design window will open
allowing you to enter the fields in your table.

3. We will now do this for each table in the KWSALES database.

Customers Table
1. Create a new table in design view. You will see:

4. There is a grid to define each field (referred to as a column here). You
supply a Column Name for the field and define its Data Type. You
also decide if the field can be null. For each field, you set field
(column) properties using the Properties Window. A special property
is Identity Specification. This is used for primary keys to insure
unique values (set Is Identity to True). To the right of the grid is where
keys and indexes are defined. Below the grid is a Design window where
the actual script language to create the table is written. Name the
Customers table by changing the first line in the script pane to:

CREATE TABLE [dbo].[Customers]

5. The first field in the Customers table is CustomerID. Enter that for a
Column Name, use a bigint Data Type and set the Is Identity
property to True. Continue adding the other fields using these choices
(the dimension indicates the length of the field):

Name DataType

FirstName varchar(40)
LastName varchar(40)
Address varchar(40)
City varchar(40)
State varchar(20)
Zip varchar(10)

Make sure all of the fields do not allow Null values (we want to make
sure we have a complete address).

At this point, the design grid should look like this:

Now, we define the primary key and any indexes to allow quick
searching. CustomerID is a primary field. If a small key does not
appear next to that field, we need to put one there. Right-click the
CustomerID row and choose Set Primary Key. A small key now
appears next to that entry indicating it is a primary key.

We want LastName to be an index. Look for this pane:

Right-click Indexes and choose Add New, then Index. You will see an
added index (IX_Customers_Column)

Highlight the index that appears and go to the Properties Window.
Choose the Columns property and click the ellipsis to see (I have
expanded the column selections)

Choose the LastName column and have Ascending Sort Order

Click OK.

Here is the final table design pane:

6. The table definition is now complete. In the upper-left corner of the
Table Designer, choose the Update button. In the Preview Database
Updates dialog box, choose the Update Database button. Your
changes are saved to the local database file.

Return to the Server Explorer window. Right-click the window and
choose Refresh. You will see the table has been added to the database:

You can now add the next table.

Orders Table
1. Create a new table in the Server Explorer window. Follow the same

steps we did for the Customers table to create this Orders table. Add
the following fields:

Name DataType
OrderID varchar(10)
CustomerID bigint
OrderDate datetime

We will use Visual Basic code to make sure OrderID is a unique value
for each order (in Chapter 10). Make sure none of the fields allow nulls.

2. Make the OrderID a primary key. Make the other two fields indexes.
The resulting design pane is (don’t forget to modify the first line in the
design script to save the table as Orders).

3. In the upper-left corner of the Table Designer, choose the Update

button. In the Preview Database Updates dialog box, choose the
Update Database button. Your changes are saved to the local database
file (after refreshing the Server Explorer window).

Purchases Table
1. Create another table in design view. Add the following fields:

Name DataType
OrderID varchar(10)
ProductID varchar(10)
Quantity int

Set Allow Nulls to Yes for ProductID and Quantity (we won’t make
someone order something!).

2. We don’t need a primary key in this table since it acts as a lookup table.
Add two indexes to the table, one for OrderID and one for ProductID.
Here is the resulting design pane:

Note the table is saved as Purchases.

In the upper-left corner of the Table Designer, choose the Update
button.In the Preview Database Updates dialog box, choose the
Update Database button. There are now three tables in the KWSALES
database:

Products Table
1. Create the final table in design view. Add the following fields:

Name DataType
ProductID varchar(10)
Description varchar(40)
Price money
NumberSold int

ProductID is our product SKU (and, I forget what SKU stands for), a
unique manufacturer serial number for each product. Do not allow any
fields to accept a Null value.

2. Make ProductID a primary key. Here is the design pane (table saved as
Products):

In the upper-left corner of the Table Designer, choose the Update
button.In the Preview Database Updates dialog box, choose the

Update Database button. We now have all four tables needed by the
KWSALES database:

Define Relationships
We have the four tables in the KWSALES database, but they are
independent entities. A last step is to define the relationships between
primary and/or foreign keys. Be aware you can only define relationships
between two fields if they are the same data type.

Here is a graphic depiction of the relationships we want to define

To define these, we need to modify script code in the table designers.

1. To relate a foreign key from one table with a primary key in another
table, right-click the table holding the foreign key and choose Open
Table Definition. As an example, we want to relate the CustomerID
field (foreign key) in Orders with the CustomerID (primary key) in
Customers. To do this, right-click the Orders table in Server Explorer
and choose Open Table Definition. In the right-side of the design
pane, right-click Foreign Keys then choose Add New Foreign Key. A
default key will be formed - You will see:

Click the script pane (Design tab) under the table definition, and replace
the default definition of the foreign key reference with the following:

CONSTRAINT [FK_Orders_CustomerID] FOREIGN KEY
([CustomerID]) REFERENCES [dbo].[Customers] ([CustomerID])

This says we have a constraint (relationship) named
FK_Orders_CustomerID that relates the CustomerID field in the
Orders table with the CustomerID field in the Customers table.

The finished script pane for Orders appears as:

We need two more relationships using foreign keys in the Purchases
table. We follow the same steps.

2. We want to relate the OrderID field (foreign key) in Purchases with
the OrderID (primary key) in Orders. To do this, right-click the
Purchases table in Server Explorer and choose Open Table
Definition. In the right-side of the design pane, right-click Foreign
Keys then choose Add New Foreign Key. A default key will be
formed.

Click the script pane (Design tab) under the table definition, and replace
the default definition of the foreign key reference with the following:

CONSTRAINT [FK_Purchases_OrderID] FOREIGN KEY
([OrderID])
REFERENCES [dbo].[Orders] ([OrderID]),

3. Lastly, we want to relate the ProductID field (foreign key) in
Purchases with the ProductID (primary key) in Products. The
Purchases table should still be displayed. In the right-side of the design
pane, right-click Foreign Keys then choose Add New Foreign Key. A
default key will be formed.

Click the script pane (Design tab) under the table definition, and replace
the default definition of the foreign key reference with the following:

CONSTRAINT [FK_Purchases_ProductID] FOREIGN KEY
([ProductID])
REFERENCES [dbo].[Products] ([ProductID]),

The finished script pane for Purchases appears as:

All of the key relationships are clearly defined. Click Update, then
choose Update Database.

The definition of the KWSALES database is now complete. This SQL
Server version of the database is saved as SQLKWSalesDB.mdf in the
VCSDB\Databases folder. It is possible to populate the database using
Server Explorer, if desired. To do this, right-click a table and choose Show
Table Data. A window will open allowing you to add values to a grid. For
example, if you choose the Customers table, you will see:

We will not populate the tables here. That will be done in code in Chapter
10.

You may wonder where SQL Server stores this database on your
computer. If you used default settings, it will be in a folder something like
this:

C:\Program Files\Microsoft SQL
Server\MSSQL12.SQLEXPRESS\MSSQL\Data

Building Access Databases with
Visual C#
If you don’t have Access or don’t want to use Access to create a database,
don’t despair. An Access type database can be created and populated using
Visual C# programming. To do this, we use something called the ADO
Extensions (ADOX) library. ADOX is related to a predecessor to ADO
.NET technology, but it is very useful for the task at hand.

Actually there are times when you need or want to use Visual C# to create
your database. An example would be an application where a user chooses
what fields he/she would want included in a particular table. In such a
case, the database table structure is not known until run-time necessitating
the use of Visual C# to build the database. Or maybe your application
requires a blank database to start. In such a case, if the user wanted to start
a new file, we would need to copy a saved database file into a new file.
When we build the distribution package for such an application, we need
to remember to include that empty file or problems will result. Rather than
trust our memory, we could just build the empty file in Visual C# using the
ADOX.

The steps followed are nearly identical to those followed using Access:

∘ Create the database
∘ Create the table(s)
∘ Add fields to the table(s)
∘ Define primary key for the table(s)
∘ Define indexes for the table(s)
∘ Once all tables are created, define relationships between tables

Each of the above steps will be discussed as we work through the example
of building the KWSALES database using Visual C#. As you build a
database file in code, you should check the structure as it is built. In the
example to follow, we use Access to check the structure. We suggest you
do the same. If you don’t have Access, there are several free products
available on the Internet that allow viewing of Access-type database files.

Example 9-3

KWSALES Database with Visual C#
In this example, we go through all the steps necessary to build the 4-table
KWSALES database using Visual C#. We will build each table and add
the associated data fields (along with any necessary keys and indexes)
individually. For reference, the table and field structure is:

Add Reference to ADOX Library
1. Start a new project in Visual C#. This project will have a single button

(Name property btnCreate, Text property Create Database). We will
simply write code in the btnCreate_Click event method to build the
database. My form looks like this:

2. To use ADOX, we must add a reference to the component. Go to the
Solution Explorer window for your new project. Right-click the
project name and choose Add Reference. The Add Reference window
will appear:

As shown, select the COM tab and select the latest version (here 2.8) of
the Microsoft ADO Ext library. Click OK. This step makes the ADOX
library available to our project.

3. Go to your project code window and add a single line to the top of code

window:

using ADOX;

Create a Database
A first step is to create the empty database. This uses the ADOX Catalog
object and its Create method. The code syntax for an Access database is:

Catalog myDatabase = new Catalog();
myDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source = " + databaseName);

where databaseName is a complete path to the database filename. This
name should have an accdb extension (for Access). The file cannot
already exist or an error will occur.

1. Add this code to the btnCreate_Click event method:

private void btnCreate_Click(object sender, EventArgs e)
{

Catalog salesDatabase = new Catalog();
try
{

salesDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + Application.StartupPath +
"\\KWSalesDB.accdb");

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally
{

salesDatabase = null;
}

}

This creates an empty database named KWSalesDB. in the application’s
Bin\Debug (Application.StartupPath) folder. We use error trapping (Try
block) in case something goes wrong.

2. Save (saved in Example 9-3 folder of VCSDB\Code\Example 9-3
folder) the application and run it. Click Create Database. Go to the
Bin\Debug folder for your project and you should see a copy of the
database you just created. Here is mine:

Create a Table
A table is created using the ADOX Table object. You must provide a
Name (a string type) for the table. The code to create a table object
(myTable) with Name myTableName and add it to an existing catalog
object (myDatabase) is:

Table myTable;
myTable = new Table();
myTable.Name = myTableName;
myDatabase.Tables.Append(myTable);

Let’s create the Customers table.

1. Return to your project. Add the shaded code to the btnCreate_Click
method:

private void btnCreate_Click(object sender, EventArgs e)
{

Catalog salesDatabase = new Catalog();
Table databaseTable;
try
{

salesDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + Application.StartupPath +
"\\KWSalesDB.accdb");

// Create Customers table
databaseTable = new Table();
databaseTable.Name = "Customers";
salesDatabase.Tables.Append(databaseTable);

}

catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally
{

salesDatabase = null;
}

}

2. Save and run the application. Click Create Database. You should see:

Recall you cannot create a database with ADOX if the name selected
already exists. We already have a database named KWSALES., so we
can’t create it again. This is a continuous problem as you design a new
database. You must always remember to delete the old version before
trying some change. Fortunately, you can do this at run-time. Just find the
file and delete it, then continue running your program. Try it. Delete
KWSALES. from your project’s Bin\Debug folder, then click Create
Database again. The file will reappear in the folder (now with the added,
albeit empty, Customers table).

3. If you have Access, open the created file. You should see that there
really is a Customers table:

Add Fields to Table
Once a table is created, we need to add fields to the table. Fields are
referred to as columns. For each field added, we need to know the field
name (myFieldName), the data type (myFieldType), and width
(myFieldWidth, an int type). To add this field (column) to a table object
(myTable), use:

myTable.Columns.Append(myFieldName, myFieldType,
myFieldWidth);

Field types we use in our work are:

FieldType Description
DataTypeEnum.adSmallInt Integer
DataTypeEnum.adInteger Long integer
DataTypeEnum.adCurrency Currency type (two decimal places)
DataTypeEnum.adDate Date
DataTypeEnum.adSingle Single precision decimal numbers
DataTypeEnum.adDouble Double precision decimal numbers
DataTypeEnum.adWChar Fixed width string

By default, added fields are required entries. For our sales database, that
is desired. In many cases, it is not. To remove this restriction from a field,
use:

myTable.Columns(myFieldName).Attributes =
ColumnAttributesEnum.adColNullable;

Let’s add fields to the Customers table. Recall the field specifications are
(all required fields):

Name DataType FieldSize

CustomerID Long 10
FirstName Text 40
LastName Text 40
Address Text 40
City Text 40
State Text 20
Zip Text 10

1. Return to your project. Add the shaded code to the btnCreate_Click
event method:

private void btnCreate_Click(object sender, EventArgs e)
{

Catalog salesDatabase = new Catalog();
Table databaseTable;
try
{

salesDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + Application.StartupPath +
"\\KWSalesDB.accdb");

// Create Customers table
databaseTable = new Table();
databaseTable.Name = "Customers";
// Add fields
databaseTable.Columns.Append("CustomerID",

DataTypeEnum.adInteger, 10);
databaseTable.Columns.Append("FirstName",

DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("LastName",

DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("Address",

DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("City",

DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("State",

DataTypeEnum.adWChar, 20);
databaseTable.Columns.Append("Zip",

DataTypeEnum.adWChar, 10);
salesDatabase.Tables.Append(databaseTable);

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally
{

salesDatabase = null;
}

}

2. Save and run the application. Click Create Database. The Customers
table will now have fields. If I open my file in Access and view the
Customers table in Design View, I see:

Recall that the CustomerID needs to be an ‘autonumber’ field meaning it
is automatically generated. Let’s make that change.

3. After the line of code creating and appending the CustomerID field,
add this code:

databaseTable.Columns["CustomerID"].ParentCatalog =
salesDatabase;
databaseTable.Columns["CustomerID"].Properties["Autoincrem
ent"].Value = true;

Now, if you rerun the application and view the table in Access, you see the
field is the proper type:

Define Table Primary Key
We want to be able to define a primary key for a table. To do this, we use
the Keys collection of an ADOX Table object. The syntax for a table
object named myTable is:

myTable.Keys.Append(myKeyName, KeyTypeEnum.adKeyPrimary,
myFieldName, null, null);

where myKeyName is a named assigned to the key and myFieldName is
the field designated as a primary key. The two null arguments are used to
define foreign keys and are not used here.

Our Customers table has a single primary key, CustomerID. Let’s define
that key.

1. Return to the project. Add the shaded line of code to the
btnCreate_Click event method:

private void btnCreate_Click(object sender, EventArgs e)
{

Catalog salesDatabase = new Catalog();
Table databaseTable;
try
{

salesDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + Application.StartupPath +
"\\KWSalesDB.accdb");

// Create Customers table
databaseTable = new Table();
databaseTable.Name = "Customers";
// Add fields

databaseTable.Columns.Append("CustomerID",
DataTypeEnum.adInteger, 10);
databaseTable.Columns["CustomerID"].ParentCatalog =
salesDatabase;

databaseTable.Columns["CustomerID"].Properties["Autoincrem
ent"].Value = true;

databaseTable.Columns.Append("FirstName",
DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("LastName",
DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("Address",
DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("City",
DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("State",
DataTypeEnum.adWChar, 20);
databaseTable.Columns.Append("Zip",
DataTypeEnum.adWChar, 10);
// Add keys
databaseTable.Keys.Append("PK_Customers",

KeyTypeEnum.adKeyPrimary, "CustomerID", null, null);
salesDatabase.Tables.Append(databaseTable);

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally
{

salesDatabase = null;
}

}

2. Resave and run the application. Click Create Database. Examining the
Customers table now shows CustomerID as a primary key (note the
key icon in the first column):

Define Table Indexes
Lastly, we want to be able to define indexes for tables. To do this, we use
the Indexes collection of a ADOX Table object. The syntax for a table
object named myTable is:

myTable.Indexes.Append(myIndexName, myFieldName);

where myIndexName is a named assigned to the index and myFieldName
is the field designated as an index. These two names can have the same
value.

Our Customers table has two indexed fields, CustomerID and
LastName. Let’s define them.

1. Return to the project. Add the shaded code to the btnCreate_Click
event method:

Private Sub btnCreate_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCreate.Click

Dim SalesDatabase As New Catalog
Dim DatabaseTable As Table
Try

SalesDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + Application.StartupPath +
"\KWSalesDB.accdb")

' Create Customers table
DatabaseTable = New Table
DatabaseTable.Name = "Customers"
' Add fields
DatabaseTable.Columns.Append("CustomerID",
DataTypeEnum.adInteger)
DatabaseTable.Columns("CustomerID").ParentCatalog =

SalesDatabase

DatabaseTable.Columns("CustomerID").Properties("Autoincrement
").Value = True

DatabaseTable.Columns.Append("FirstName",
DataTypeEnum.adWChar, 40)
DatabaseTable.Columns.Append("LastName",
DataTypeEnum.adWChar, 40)
DatabaseTable.Columns.Append("Address",
DataTypeEnum.adWChar, 40)
DatabaseTable.Columns.Append("City",
DataTypeEnum.adWChar, 40)
DatabaseTable.Columns.Append("State",
DataTypeEnum.adWChar, 20)
DatabaseTable.Columns.Append("Zip",
DataTypeEnum.adWChar, 10)
' Add keys
DatabaseTable.Keys.Append("PK_Customers",

KeyTypeEnum.adKeyPrimary, "CustomerID")
' Add indexes
DatabaseTable.Indexes.Append("CustomerID",
"CustomerID")
DatabaseTable.Indexes.Append("LastName", "LastName")
SalesDatabase.Tables.Append(DatabaseTable)

Catch ex As Exception
MessageBox.Show(ex.Message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error)
Finally

SalesDatabase = Nothing
End Try

End Sub

2. Resave and run the application. Click Create Database. If you examine
the CustomerID and LastName fields in the Customers table (using
Access), you will see that they are indexes. The Customers table is
now complete. Let’s create the other three tables.

3. The Orders table has three fields:

Name DataType
OrderID Text (FieldSize = 10)
CustomerID Number (Long Integer, no default value, FieldSize =

10)
OrderDate Date/Time (FieldSize = 20)

The primary key is OrderID. All three fields are indexed fields. The code
that creates this table structure is:

// Create Orders table
databaseTable = new Table();
databaseTable.Name = "Orders";
// Add fields
databaseTable.Columns.Append("OrderID",
DataTypeEnum.adWChar, 10);
databaseTable.Columns.Append("CustomerID",
DataTypeEnum.adInteger, 10);
databaseTable.Columns.Append("OrderDate",
DataTypeEnum.adDate, 20);
// Add keys
databaseTable.Keys.Append("PK_OrderID",
KeyTypeEnum.adKeyPrimary, "OrderID", null, null);
// Add indexes
databaseTable.Indexes.Append("OrderID", "OrderID");
databaseTable.Indexes.Append("CustomerID", "CustomerID");
databaseTable.Indexes.Append("OrderDate", "OrderDate");
salesDatabase.Tables.Append(databaseTable);

Add this code to the btnCreate_Click method following creation of the
Customers table. Save the application once again and run it. Click Create
Database. Viewing the Orders table in Access shows the fields are
correct and the primary index is identified:

4. The Purchases table has three fields:

Name DataType
OrderID Text (FieldSize = 10)
ProductID Text (FieldSize = 10)
Quantity Number (Integer, FieldSize = 10)

There is no primary key. OrderID and ProductID are indexed fields. The
code that creates this table structure is:

// Create Purchases table
databaseTable = new Table();
databaseTable.Name = "Purchases";
// Add fields
databaseTable.Columns.Append("OrderID",
DataTypeEnum.adWChar, 10);
databaseTable.Columns.Append("ProductID",
DataTypeEnum.adWChar, 10);
databaseTable.Columns.Append("Quantity",
DataTypeEnum.adSmallInt, 10);
// Add indexes
databaseTable.Indexes.Append("OrderID", "OrderID");
databaseTable.Indexes.Append("ProductID", "ProductID");
salesDatabase.Tables.Append(databaseTable);

Add this code to the btnCreate_Click method following creation of the
Orders table. Save the application once again and run it. Click Create
Database. Viewing the Purchases table in Access shows the fields are
correct:

5. And, lastly, the Products table has four fields:

Name DataType
ProductID Text (FieldSize = 10)
Description Text (FieldSize = 40)
Price Currency (FieldSize = 20)
NumberSold Number (Integer, FieldSize = 10)

ProductID is a primary key. There are no indexes. The code that creates
this table structure is:

// Create Products table
databaseTable = new Table();
databaseTable.Name = "Products";
// Add fields
databaseTable.Columns.Append("ProductID",
DataTypeEnum.adWChar, 10);
databaseTable.Columns.Append("Description",
DataTypeEnum.adWChar, 40);
databaseTable.Columns.Append("Price",
DataTypeEnum.adCurrency, 20);
databaseTable.Columns.Append("NumberSold",
DataTypeEnum.adSmallInt, 10);
// Add keys
databaseTable.Keys.Append("PK_ProductID",
KeyTypeEnum.adKeyPrimary, "ProductID", null, null);
salesDatabase.Tables.Append(databaseTable);

Add this code to the btnCreate_Click method following creation of the
Purchases table. Save the application once again and run it. Click Create
Database. Viewing the Products table in Access shows the fields are

correct and the primary index is identified:

We now have all four tables in the KWSALES database.

Define Table Relationships
The last step in creating a database using Visual C# is to define the
relationships between keys in the various tables. The process involves first
creating needed foreign keys. Each foreign key is then related to the
corresponding primary key in another table.

Say we have field1 in table1 that is a primary key. Now, say field2 in
table2 is a foreign key object (named myForeignKey) related to that
primary key. The steps to create such a relationship are (assuming both
tables are part of an ADOX catalog myCatalog):

myCatalog.Tables[table2].Keys.Append(myForeignKeyName,
KeyTypeEnum.adKeyForeign, field2, table1, field1);

where myForeignKeyName is a named assign to the key. This code adds
field2 to the foreign key, then relates it to field1 in table1. The key is then
appended to table2.

There are three foreign keys in the KWSALES database. Let’s define each
one.

1. Return to the project. The first foreign key (name is FK_CustomerID)
is CustomerID in the Orders table. It is related to the CustomerID
(primary key) in the Customers table. The code to make this relation is:

// Define relationships
// Relate CustomerID field in Customers to CustomerID in Orders
(Foreign key)
salesDatabase.Tables["Orders"].Keys.Append("FK_CustomerID" ,
KeyTypeEnum.adKeyForeign, "CustomerID", "Customers",
"CustomerID");

Place this code in the btnCreate_Click method after creation of the
Products table.

2. The second foreign key (name is FK_OrderID) is OrderID in the
Purchases table. It is related to the OrderID (primary key) in the
Orders table. The code to create this relation is:

// Relate OrderID field in Orders to OrderID in Purchases (Foreign
key)
salesDatabase.Tables["Purchases"].Keys.Append("FK_OrderID" ,
KeyTypeEnum.adKeyForeign, "OrderID", "Orders", "OrderID");

Place this code in the btnCreate_Click method after creation of the
CustomerID foreign key.

3. The final foreign key (name is FK_ProductID) is ProductID in the
Purchases table. It is related to the ProductID (primary key) in the
Products table. The code to create this relation is:

// Relate ProductID field in Products to ProductID in Purchases
(foreign key)
salesDatabase.Tables["Purchases"].Keys.Append("FK_ProductI
D", KeyTypeEnum.adKeyForeign, "ProductID", "Products",
"ProductID");

Place this code in the btnCreate_Click method after creation of the
OrderID foreign key.

4. Save the application one last time (saved in Example 9-3 folder of
VCSDB\Code\Example 9-3 folder). Run it. Click Create Database.
The database and all relationships should now be created. If you open
the database in Access and view the relationships (click Tools, then
Relationships) you see:

All of the key relationships are clearly defined.

Like the Access example, it is possible to add values to the tables at this
point, if desired. You would use the data objects discussed in previous
chapters. Once the objects are created, you could programmatically add
rows to tables and update the database. We will not populate the tables
here. It will be done in the examples in Chapter 10.

Example 9-4

SQL Server Databases with Visual C#
It is also possible to create SQL Server databases using Visual C#. The
process involves executing SQL statements to perform each step in the
development:

• Create the database
• Create the table(s)
• Add fields to the table(s)
• Define primary key for the table(s)
• Define indexes for the table(s)
• Define relationships between tables

In this example, we will perform just the first step – create a SQL server
database. The remaining steps involve using some fairly complicated SQL
statements which are beyond the scope of this course. We direct the reader
to SQL references (and the Internet) for further information.

1. Start a new project in Visual C#. This project will have a single button
(Name property btnCreate, Text property Create Database). We will
simply write code in the btnCreate_Click event procedure to create the
database. My form looks like this:

2. Go to your project code window and add the usual line:

using System.Data.SqlClient;

3. Add this code to the btnCreate_Click event procedure:

private void btnCreate_Click(object sender, EventArgs e)
{

SQLConnection myConnection = new
SqlConnection("Server=.\SQLEXPRESS;
Trusted_Connection=Yes");

SQLCommand myCommand = new SqlCommand("CREATE
DATABASE

SQLDatabase", myConnection);
myConnection.Open();
myCommand.ExecuteNonQuery();
myConnection.Close()

}

This creates an empty database named SQLDatabase.mdf on your SQL
Server instance (named .\SQLEXPRESS on my computer). The
database is created by executing the SQL command:

CREATE DATABASE SQLDatabase

against the open connection object myConnection.

4. Save the application and run it. Click Create Database. If there are no
errors, the database is created. But, just where is the database?

The newly created database is located on your SQL Server instance. Start a
new Visual C# project. Click the View menu and select Server Explorer.
You should see:

Right-click Data Connections and choose Add Connection. This form
appears:

Make the shown entries (user your server name) and click OK.

In the Server Explorer, you will now see:

Listed under the Data Connections is SQLDatabase. It is an empty
database with no tables. As mentioned, adding tables, fields, and
relationships requires additional SQL statements to be executed against the
connection object. We will not cover such statements here.

If you do continue development of a SQL Server database with Visual C#,
be aware when you run your application again, you will probably get an
error message like this:

You cannot create a database if the name selected already exists. We
already have a database named SQLDatabase, so we can’t create it again.
This is a continuous problem as you design a new database. You must
always remember to delete the old version before trying some change. This
deletion is done by right-clicking the database in the Server Management
tool and choosing Delete.

Database Design Refinement
The database design is complete and the database has been built (using one
of the two methods discussed). Before building the database management
system (using Visual C#, of course), you should re-examine your database
design. This will make any shortcomings immediately apparent.

Things you should check include:

∘ Are the fields the proper type?
∘ Are text fields long enough, too long?
∘ Are there missing fields?
∘ Are any additional fields needed?

You may find you need to redesign your database. And, yes, you may need
to start over. A database structure is usually permanent and cannot be
easily changed. But, modifying your database now, before you build a
complete management system to work with it, is much easier than
changing things further down the development road.

Summary
In this chapter, we discussed several steps for developing a well-designed
database for use in a database management system (like the one built in
Chapter 6 and modified in Chapter 7). The major considerations in
designing a database are to be complete, thorough, and accurate. Later
modification of a database project can be a major undertaking.

The use of the Access and the Visual C# ADOX library to build an Access
database were examined. Building a SQL Server database using Server
Explorer was also covered. The empty database built can be connected to a
Visual Basic front-end interface to form a complete database management
system. In the next chapter, we look at three case studies that do just that.

10
Sample Database Projects

Review and Preview
We have completed our introduction (a long introduction) into database
programming with Visual C#. We have learned about database structure,
proper interface design, database management techniques, database
reports, and how to create a database.

In this chapter, we put all our skills to work and look at some sample
projects. These projects are typical database applications. The applications
studied are a program using the KWSALES database just built in Chapter
9, a home inventory tracking system, and a weather monitor.

Overview of Database Projects
We will build three projects in this chapter. The first is a sales order form
for the KWSALES database built in the previous chapter. The second
application allows a user to keep track of items in their homes or other
locations, for possible insurance claim use. And, the final application is a
weather-monitoring program that records and plots temperatures and
precipitation over time.

Each project will be built in stages. And, the steps followed in each stage
are explained in detail. This will give you an idea of how to use Visual C#
to build a database management system. Visual C# is an ideal environment
for building applications in this way. Suggestions for improving each
application are also provided.

One other suggestion – when building your applications, make a copy of
your database before starting. Many errors can occur when developing a
project and you wouldn’t want any of these errors to destroy needed data.
So, always build with a working copy of your database. When you are sure
the project is working correctly, you can use a ‘clean’ copy.

Example 10-1

Sales Order Form Project
In Chapter 9, we built a database similar to the one we use here at our
company (KIDware) to track orders and sales. In this application, we build
a Visual C# interface for that database. The interface will be used to enter
new orders into the database.

The order form should allow entry of the following information into the
database:

Order ID
Order Date
Customer ID
Customer first and last name
Customer address information
Product(s) ordered information

The form should have the ability to add new orders, find past customers,
and add new customers. Completed order invoices should be available as
printed reports. Before starting this project, we suggest a quick review of
Chapter 9 to get reacquainted with the structure of the KWSALES
database.

Preliminaries
Start a new project in Visual C#. Copy KWSalesDB.accdb into your
project’s Bin\Debug folder (you may have to create it first). One option is
to use the blank database from Chapter 9 in the VCSDB\Databases folder.
Or, you might like to use the copy included with this example’s course
code (in Example 10-1 folder of the VCSDB\Code\Class 10 folder).
Product information is included in this database and there are a few
customers and orders you can look at. We use the latter in this example.

Order Information
We’ll begin this project by developing the ability to submit an order or exit
the program. The order submission capability will not be coded now, but
the interface for access will be begun.

1. Near the top of the displayed form, place a group box, two buttons, and
four label controls. The top of the form should look something like this:

2. Set these properties:

Form1:
Name frmKWSales
ControlBox False
FormBorderStyle Fixed Single
StartPosition CenterScreen
Text KWSales Order Form

groupBox1:
Name grpOrder
Text Order
FontSize 10
FontBold True

button1:
Name btnSubmitOrder
Text Submit

FontSize 10

button2:
Name btnExit
Text Exit
FontSize 10

label1:
Text KIDware Order
FontSize 10

label2:
Name lblOrderID
Text [Blank]
FontSize 10

label3:
Text Order Date
FontSize 10

label4:
Name lblDate
Text [Blank]
FontSize 10

The top of my finished form looks like this:

When the application begins, the form will be in a mode to accept a new
order. In this mode, we want a new order number and the current date.
(Later, we will insure the customer information is also blank.)

1. Place this line at the top of the code window to allow use of data
objects:

using System.Data.OleDb;

2. Place this code in the form level declarations:

int orderNumber;
OleDbConnection KWSalesConnection;
OleDbCommand ordersCommand;
OleDbDataAdapter ordersAdapter;
DataTable ordersTable;

The variable orderNumber tells us how many orders have been entered
on a particular day. The remaining declarations are the data objects needed
to look at the Orders table in the database.

3. Place this code in the frmKWSales_Load event method:

private void frmKWSales_Load(object sender, EventArgs e)
{

// connect to sales database
KWSalesConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\KWSalesDB.accdb");

KWSalesConnection.Open();
// establish Orders command object
ordersCommand = new OleDbCommand("SELECT * FROM
Orders

ORDER BY OrderID", KWSalesConnection);
// establish Orders data adapter/data table
ordersAdapter = new OleDbDataAdapter();
ordersAdapter.SelectCommand = ordersCommand;
ordersTable = new DataTable();
ordersAdapter.Fill(ordersTable);
orderNumber = 0;

NewOrder();
}

This code connects to the KWSALES database file (in the application
folder) and creates the data objects needed to view the Orders table. It
initializes the orderNumber and starts a new order (NewOrder method
will be seen soon).

4. Place this code in the frmKWSales_FormClosing event method to
clean up objects:

private void frmKWSales_FormClosing(object sender,
FormClosingEventArgs e)
{

// close the connection
KWSalesConnection.Close();
// dispose of the objects
ordersCommand.Dispose();
ordersAdapter.Dispose();
ordersTable.Dispose();

}

5. Add a general method named NewOrder and use this code:

private void NewOrder()
{

string IDString;
DateTime thisDay = DateTime.Now;
lblDate.Text = thisDay.ToShortDateString();
// Build order ID as string
orderNumber++;
IDString = thisDay.Year.ToString().Substring(2);
if (thisDay.Month < 10)

IDString += "0" + thisDay.Month.ToString();
else

IDString += thisDay.Month.ToString();
if (thisDay.Day < 10)

IDString += "0" + thisDay.Day.ToString();
else

IDString += thisDay.Day.ToString();
if (orderNumber < 10)

IDString += "00" + orderNumber.ToString();
else if (orderNumber < 100)

IDString += "0" + orderNumber.ToString();
else

IDString += orderNumber.ToString();
lblOrderID.Text = IDString;

}

This code places today’s date in the lblDate control, and generates a new
orderID value. In our work, we establish our own format for orderID. It
has nine characters: the first two are the last two numbers in the year, the
next two the month, the next two the day, and the final three unique digits
incremented with each order. For example, if this is the third order on
October 8, 2006, the orderID is: 061008003.

6. Place this code in the btnExit_Click event:

private void btnExit_Click(object sender, EventArgs e)
{

this.Close();
}

7. Save the application (saved in Example 10-1 folder in
VCSDB\Code\Class 10 folder) and run it. You should see this
(assuming it’s January 1, 2007 today!) at the top of the form:

Next we look at adding customer information. We have not coded the
Submit Order button yet – this is intentional.

Existing Customer Information
We now add the ability to find an existing customer in our database and
display the corresponding information on our order form. We want to
display the customer name and address information.

1. Add another group box, a combo box control, 6 labels and 6 text box
controls to the form under the Order group box. The form should look
like this:

2. Use these properties (note the default names may differ depending on
where you placed controls):

groupBox1:
Name grpCustomer
Text Customer
FontSize 10

FontBold True

comboBox1:
Name cboCustomers
FontSize 10
Sorted True
DropDownStyle DropdownList

label2:
Text First Name:
FontSize 10

textBox1 :
Name txtFirstName
BackColor White
FontSize 10
ReadOnly True

label4:
Text Last Name:
FontSize 10

textBox2:
Name txtLastName
BackColor White
FontSize 10
ReadOnly True

label5:
Text Address:
FontSize 10

textBox3:
Name txtAddress
BackColor White
FontSize 10

ReadOnly True

label6:
Text City:
FontSize 10

textBox4:
Name txtCity
BackColor White
FontSize 10
ReadOnly True

label7:
Text State:
FontSize 10

textBox5:
Name txtState
BackColor White
FontSize 10
ReadOnly True

label8:
Text Zip:
FontSize 10

textBox6:
Name txtZip
BackColor White
FontSize 10
ReadOnly True

The form should now look like this:

3. We add another set of data objects that connect to the Customers table
in the database. Add these form level declarations:

OleDbCommand customersCommand;
OleDbDataAdapter customersAdapter;
DataTable customersTable;
CurrencyManager customersManager;

4. Add the shaded code to the frmKWSales_Load event method to create
the new objects and bind the label controls:

private void frmKWSales_Load(object sender, EventArgs e)
{

// connect to sales database
KWSalesConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\KWSalesDB.accdb");

// establish Orders command object
ordersCommand = new OleDbCommand("SELECT * FROM
Orders

ORDER BY OrderID", KWSalesConnection);
// establish Orders data adapter/data table
ordersAdapter = new OleDbDataAdapter();
ordersAdapter.SelectCommand = ordersCommand;
ordersTable = new DataTable();
ordersAdapter.Fill(ordersTable);
// establish Customers command object
customersCommand = new OleDbCommand("SELECT *
FROM

Customers", KWSalesConnection);
// establish Customers data adapter/data table
customersAdapter = new OleDbDataAdapter();
customersAdapter.SelectCommand = customersCommand;
customersTable = new DataTable();
customersAdapter.Fill(customersTable);
// bind controls to data table
txtFirstName.DataBindings.Add("Text", customersTable,
"FirstName");
txtLastName.DataBindings.Add("Text", customersTable,
"LastName");
txtAddress.DataBindings.Add("Text", customersTable,
"Address");
txtCity.DataBindings.Add("Text", customersTable, "City");
txtState.DataBindings.Add("Text", customersTable, "State");
txtZip.DataBindings.Add("Text", customersTable, "Zip");
// establish currency manager
customersManager = (CurrencyManager)

this.BindingContext[customersTable];
orderNumber = 0;
NewOrder();

}

5. Add the shaded code to the frmKWSales_FormClosing method:

private void frmKWSales_FormClosing(object sender,
FormClosingEventArgs e)
{

// close the connection
KWSalesConnection.Close();
// dispose of the objects
ordersCommand.Dispose();
ordersAdapter.Dispose();
ordersTable.Dispose();
customersCommand.Dispose();
customersAdapter.Dispose();
customersTable.Dispose();

}

6. We will use the combo box to list existing customers in the following
format:

LastName, FirstName (CustomerID)

This will let us easily locate an existing customer based on unique
CustomerID. When a user selects a name, the name and address fields
will be filled in. Add this general method (FillCustomers) to the project
(this code initializes the listings in the combo box):

private void FillCustomers()
{

if (customersTable.Rows.Count != 0)
{

for (int nRec = 0; nRec < customersTable.Rows.Count;
nRec++)
{

cboCustomers.Items.Add(CustomerListing(customersTable.Rows
[nRec]["LastName"].ToString(),
customersTable.Rows[nRec]["FirstName"].ToString(),
customersTable.Rows[nRec]["CustomerID"].ToString()));

}
}

}

This uses a little method (CustomerListing) to generate the proper format:

private string CustomerListing(string lastName, string firstName,
string ID)
{

return (lastName + ", " + firstName + " (" + ID + ")");
}

Now add this to the frmKWSales_Load event method right after the code
establishing the Customers table data objects (before the orderNumber =
0 line:

// Fill customers combo box
FillCustomers();

7. Place this code in the cboCustomers_SelectedIndexChanged event
(this code fills the customer address information based on the selected
customer):

private void cboCustomers_SelectedIndexChanged(object sender,
EventArgs e)
{

string ID;
int pl;
string s = cboCustomers.SelectedItem.ToString();
try
{

pl = s.IndexOf("(");
if (pl == -1)

return;
// extract ID from selected item
ID = s.Substring(pl + 1, s.Length - pl - 2);

customersTable.DefaultView.Sort = "CustomerID";
customersManager.Position =

customersTable.DefaultView.Find(ID);
}
catch (Exception ex)
{

MessageBox.Show("Could not find customer", "Search
Error",

MessageBoxButtons.OK, MessageBoxIcon.Information);
}

}

8. Place this code at the bottom of the NewOrder method to initialize
customer information:

if (cboCustomers.Items.Count != 0)
{

cboCustomers.SelectedIndex = 0;
}

9. Save and run the application. Choose a customer (assuming there are
some in your database – the sample has a few). Here’s what I get when
I choose myself:

Adding a New Customer
What if the customer placing an order is new and has no information on
file? We need to modify the project to account for this possibility. The
coding is a little tricky. Recall from our work with the books database that
autonumber fields (like the CustomerID field) are not generated by ADO
.NET until the database is written back to file. We need the CustomerID
for any new customers we add to our database. Hence, when names are
added, we need to close, then reopen the database to retrieve the
CustomerID value. See the btnSave_Click event method for details.

1. Add a three buttons to the right of the combo box in the Customer area
of the KWSales form:

2. Use these properties:

button1:
Name btnNew
FontSize 8
Text New

button2:
Name btnSave
Enabled False
FontSize 8
Text Save

button3:
Name btnCancel
Enabled False
FontSize 8
Text Cancel

When the New button is clicked, the user can type in new customer
information. This can then be saved in the database. The form now looks
like this:

3. Add two variables in the form level declarations:

bool newCustomer = false;
int savedIndex;

newCustomer is used to indicate if we are adding a customer.
savedIndex is used to return to the currently displayed customer if
adding a new customer is cancelled.

4. Add this code to the btnNew_Click event method:

private void btnNew_Click(object sender, EventArgs e)
{

// enable text boxes for editing and add row
newCustomer = true;
txtFirstName.ReadOnly = false;
txtLastName.ReadOnly = false;
txtAddress.ReadOnly = false;
txtCity.ReadOnly = false;
txtState.ReadOnly = false;
txtZip.ReadOnly = false;
btnNew.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
savedIndex = cboCustomers.SelectedIndex;
cboCustomers.SelectedIndex = -1;
cboCustomers.Enabled = false;
customersManager.AddNew();
txtFirstName.Focus();

}

This sets the form in proper state and adds an empty record to the customer
list.

5. Add this code to the top of the cboCustomers_SelectedIndexChanged
event method (to keep the search from occurring while entering a new

customer):

if (newCustomer)
return;

6. Code the KeyPress event for each text box to let the <Enter> key
change focus:

private void txtFirstName_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
txtLastName.Focus();

}

private void txtLastName_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
txtAddress.Focus();

}

private void txtAddress_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
txtCity.Focus();

}

private void txtCity_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
txtState.Focus();

}

private void txtState_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
txtZip.Focus();

}

private void txtZip_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
btnSave.Focus();

}

7. Add this code to the btnCancel_Click event method (this returns the
screen to the previous customer without changing anything):

private void btnCancel_Click(object sender, EventArgs e)
{

// return to previous customer
newCustomer = false;
txtFirstName.ReadOnly = true;
txtLastName.ReadOnly = true;
txtAddress.ReadOnly = true;
txtCity.ReadOnly = true;
txtState.ReadOnly = true;
txtZip.ReadOnly = true;
btnNew.Enabled = true;
btnSave.Enabled = false;
btnCancel.Enabled = false;
customersManager.CancelCurrentEdit();
cboCustomers.Enabled = true;
cboCustomers.SelectedIndex = savedIndex;

}

8. Use this code in the btnSave_Click event method:

private void btnSave_Click(object sender, EventArgs e)
{

bool allOK = true;
// make sure there are entries
if (txtFirstName.Text.Equals(""))

allOK = false;
if (txtLastName.Text.Equals(""))

allOK = false;
if (txtAddress.Text.Equals(""))

allOK = false;
if (txtCity.Text.Equals(""))

allOK = false;
if (txtState.Text.Equals(""))

allOK = false;
if (txtZip.Text.Equals(""))

allOK = false;
if (!allOK)
{

MessageBox.Show("All text boxes require an entry.",
"Information Missing", MessageBoxButtons.OK,
MessageBoxIcon.Information);

txtFirstName.Focus();
return;

}
customersManager.EndCurrentEdit();
// save to database then reopen to retrieve assigned CustomerID
string savedFirstName = txtFirstName.Text;
string savedLastName = txtLastName.Text;
OleDbCommandBuilder customersAdapterCommands = new

OleDbCommandBuilder(customersAdapter);
customersAdapter.Update(customersTable);

KWSalesConnection.Close();
// reconnect to sales database
KWSalesConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\KWSalesDB.accdb");

customersCommand = new OleDbCommand("SELECT *
FROM Customers", KWSalesConnection);
customersAdapter = new OleDbDataAdapter();
customersAdapter.SelectCommand = customersCommand;
customersTable = new DataTable();
customersAdapter.Fill(customersTable);
// rebind controls to data table
txtFirstName.DataBindings.Clear();
txtLastName.DataBindings.Clear();
txtLastName.DataBindings.Clear();
txtAddress.DataBindings.Clear();
txtCity.DataBindings.Clear();
txtState.DataBindings.Clear();
txtZip.DataBindings.Clear();
txtFirstName.DataBindings.Add("Text", customersTable,
"FirstName");
txtLastName.DataBindings.Add("Text", customersTable,
"LastName");
txtAddress.DataBindings.Add("Text", customersTable,
"Address");
txtCity.DataBindings.Add("Text", customersTable, "City");
txtState.DataBindings.Add("Text", customersTable, "State");
txtZip.DataBindings.Add("Text", customersTable, "Zip");
customersManager = (CurrencyManager)
this.BindingContext[customersTable];
/// Find added customer
string ID = "";
for (int i = 0; i < customersTable.Rows.Count; i++)
{

if
(customersTable.Rows[i]["FirstName"].ToString().Equals(sav
edFirstName) &&
customersTable.Rows[i]["LastName"].ToString().Equals(saved
LastName))

{
ID =

customersTable.Rows[i]["CustomerID"].ToString();
break;

}
}
cboCustomers.Enabled = true;
// refill customers combo box
FillCustomers();
// display new customer
newCustomer = false;
txtFirstName.ReadOnly = true;
txtLastName.ReadOnly = true;
txtAddress.ReadOnly = true;
txtCity.ReadOnly = true;
txtState.ReadOnly = true;
txtZip.ReadOnly = true;
btnNew.Enabled = true;
btnSave.Enabled = false;
btnCancel.Enabled = false;
cboCustomers.SelectedItem =

CustomerListing(savedLastName, savedFirstName, ID);
}

This is a lot of code, but actually pretty easy to follow. This code first
checks to make sure all text boxes are filled. It then ends the edit and saves
the changes to the database. This allows us to retrieve the needed
CustomerID field (an autonumber field not available until the database is
saved). We then reopen the database file, recreate the Customers data

objects, rebind the controls and add the new customer. A lot of work, but
necessary.

9. Add the shaded code to the frmKWSales_FormClosing event method.
This code saves any changes made back to the database file.

private void frmKWSales_FormClosing(object sender,
FormClosingEventArgs e)
{

if (newCustomer)
{

MessageBox.Show("You must finish the current edit
before stopping.", "", MessageBoxButtons.OK,
MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save the tables to the database file
OleDbCommandBuilder ordersAdapterCommands =
new

OleDbCommandBuilder(ordersAdapter);
ordersAdapter.Update(ordersTable);
OleDbCommandBuilder customersAdapterCommands =
new

OleDbCommandBuilder(customersAdapter);
customersAdapter.Update(customersTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database", "Save
Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

}
// close the connection
KWSalesConnection.Close();
// dispose of the objects
ordersCommand.Dispose();
ordersAdapter.Dispose();
ordersTable.Dispose();
customersCommand.Dispose();
customersAdapter.Dispose();
customersTable.Dispose();

}
}

10. Save and run the application. Make sure you can add new customers
and make sure they appear in the combo box for selection after
addition. Check to insure they are saved to database after closing the
application. Make sure the Cancel button works correctly. Here’s an
entry I added:

Product Selection
Now, we’re ready to add the ability to select products for ordering. We’ll
use the popular ‘shopping cart’ approach. A user will select the quantity of
product(s) desired. These will be added to a shopping cart (list box) so it is
clear what has been ordered. A running total of the cost of the order will be
kept. The user will be able to add and remove items from the shopping cart
at will.

1. In the lower left corner of the form (make the form taller), add a group
box, a combo box, three label controls, a numeric updown control, and
a button. The layout should resemble this:

2. Set these properties:

groupBox1:
Name grpProducts
Text Products
FontSize 10
FontBold True

comboBox1:
Name cboProducts
DropdownStyle DropdownList

label9:
Text Quantity

FontSize 10

label10:
Text Total:
FontSize 10

label11:
Name lblTotal
AutoSize False
BackColor White
BorderStyle Fixed3D
Text 0.00
TextAlign MiddleCenter
FontSize 10

numericUpDown1:
Name nudQuantity
Minimum 1
Maximum 99
TextAlign Center
Value 1

button1:
Name btnAdd
FontSize 8
Text Add to Cart

At this point, the new group box appears like:

This will work as follows: the user selects a product using the combo box
and sets the quantity using the numeric updown control. The purchase is
added to the shopping cart by clicking Add to Cart. The Total box will
indicate the current cost of the order. Let’s build the shopping cart, and
then do the coding.

1. Add a group box next to the Products group box. Place a list box and a
button in the group box. The additions should resemble this:

2. Set these properties:

groupBox1:
Name grpCart
Text Shopping Cart
FontSize 10
FontBold True

listBox1:
Name lstCart
FontSize 8
Sorted True

button1:
Name btnRemove
FontSize 8
Text Remove from Cart

The completed Order Form with the added Products and Shopping Cart
group boxes now looks like this:

3. We add another set of data objects that connect to the Products table in
the database. Add these form level declarations:

OleDbCommand productsCommand;
OleDbDataAdapter productsAdapter;
DataTable productsTable;

4. Add the shaded code to the frmKWSales_Load event method to create
the new objects and bind the combo box control:

private void frmKWSales_Load(object sender, EventArgs e)
{

// connect to sales database
KWSalesConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data

Source = " + Application.StartupPath + "\\KWSalesDB.accdb");
// establish Orders command object
ordersCommand = new OleDbCommand("SELECT * FROM
Orders

ORDER BY OrderID", KWSalesConnection);
// establish Orders data adapter/data table
ordersAdapter = new OleDbDataAdapter();
ordersAdapter.SelectCommand = ordersCommand;
ordersTable = new DataTable();
ordersAdapter.Fill(ordersTable);
// establish Customers command object
customersCommand = new OleDbCommand("SELECT *
FROM

Customers", KWSalesConnection);
// establish Customers data adapter/data table
customersAdapter = new OleDbDataAdapter();
customersAdapter.SelectCommand = customersCommand;
customersTable = new DataTable();
customersAdapter.Fill(customersTable);
// bind controls to data table
txtFirstName.DataBindings.Add("Text", customersTable,
"FirstName");
txtLastName.DataBindings.Add("Text", customersTable,
"LastName");
txtAddress.DataBindings.Add("Text", customersTable,
"Address");
txtCity.DataBindings.Add("Text", customersTable, "City");
txtState.DataBindings.Add("Text", customersTable, "State");
txtZip.DataBindings.Add("Text", customersTable, "Zip");
// establish currency manager
customersManager = (CurrencyManager)

this.BindingContext[customersTable];
// establish Products command object
productsCommand = new OleDbCommand("SELECT * FROM

Products ORDER BY Description", KWSalesConnection);
// establish Products data adapter/data table
productsAdapter = new OleDbDataAdapter();
productsAdapter.SelectCommand = productsCommand;
productsTable = new DataTable();
productsAdapter.Fill(productsTable);
// bind combobox to data table
cboProducts.DataSource = productsTable;
cboProducts.DisplayMember = "Description";
cboProducts.ValueMember = "ProductID";
// Fill customers combo box
FillCustomers();
orderNumber = 0;
NewOrder();

}

5. Add these three lines near the bottom of the
frmKWSales_FormClosing method (where the other objects are
disposed):

productsCommand.Dispose();
productsAdapter.Dispose();
productsTable.Dispose();

6. Put this code at the bottom of the NewOrder method (this will initialize
the Purchases and Shopping Cart group boxes):

// Clear purchase information
cboProducts.SelectedIndex = -1;
nudQuantity.Value = 1;
lblTotal.Text = "0.00";
lstCart.Items.Clear();

7. Put this code in the btnAdd_Click method:

private void btnAdd_Click(object sender, EventArgs e)

{
float unitPrice = 0.00F;
if (cboProducts.SelectedIndex == -1)
{

MessageBox.Show("You must select a product.",
"Purchase Error", MessageBoxButtons.OK,
MessageBoxIcon.Information);

return;
}
// Find unit price of selected product
for (int nRec = 0; nRec < productsTable.Rows.Count; nRec++)
{

if
(productsTable.Rows[nRec]["Description"].ToString().Equals
(cboProducts.Text.ToString()))

{
unitPrice =

Convert.ToSingle(productsTable.Rows[nRec]["Price"]);
break;

}
}
lstCart.Items.Add(nudQuantity.Value.ToString() + " " +

cboProducts.SelectedValue.ToString() + "-" +
cboProducts.Text.ToString() + " $" +
unitPrice.ToString());

// Adjust total price
lblTotal.Text = string.Format("{0:f2}",

Convert.ToSingle(lblTotal.Text) +
Convert.ToSingle(nudQuantity.Value) * unitPrice);
}

This code finds the price and description of the selected product and adds
the item to the Shopping Cart list box. The format of the listing is:

Quantity ProductID–Description Price

The code also adjusts the displayed total price.

8. Add this code to the btnRemove_Click event method (this removes a
selected object and adjusts the displayed price):

private void btnRemove_Click(object sender, EventArgs e)
{

int q, i;
float p;
if (lstCart.SelectedIndex != -1)
{

// Adjust total before removing
// find Q (quantity) and P (price)
i = lstCart.Text.IndexOf(" ");
q = Convert.ToInt32(lstCart.Text.Substring(0, i));
i = lstCart.Text.IndexOf("$");
p = Convert.ToSingle(lstCart.Text.Substring(i + 1,
lstCart.Text.Length - i - 1));
lblTotal.Text = String.Format("{0:f2}",
Convert.ToSingle(lblTotal.Text) - q * p);
lstCart.Items.RemoveAt(lstCart.SelectedIndex);

}
}

3. Save and run the application. Try selecting and adding items to the
shopping cart. Try removing items. Make sure everything works as it
should. Here’s what the form looks like after selecting a customer and a
few items:

Submitting an Order
We now have the ability to specify what to order. A final step is to commit
all order information to the database. The method is a bit complicated but
straightforward. When the user clicks the Submit button, the following
will occur:

Cycle through each item in the shopping cart. For each:

∘ Add a new row to ordersTable. Set values for OrderID,
CustomerID, OrderDate fields.

∘ Add a new row to purchasesTable (not created yet; the data table
representing the Purchases table).

∘ Parse the shopping cart listing to obtain quantity purchased and
product identification.

∘ Update purchasesTable with OrderID, Quantity and ProductID
fields.

∘ Update NumberSold field in ProductsTable (use Quantity and
ProductID for reference).

Start a new order.

Let’s implement these steps.

1. We add a final set of data objects that connect to the Purchases table in
the database and a variable to store the Customer ID. Add these form
level declarations:

OleDbCommand purchasesCommand;
OleDbDataAdapter purchasesAdapter;
DataTable purchasesTable;
long customerID;

2. Add the shaded code to the frmKWSales_Load event method to create

the new objects:

private void frmKWSales_Load(object sender, EventArgs e)
{

// connect to sales database
KWSalesConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\KWSalesDB.accdb");

// establish Orders command object
ordersCommand = new OleDbCommand("SELECT * FROM
Orders

ORDER BY OrderID", KWSalesConnection);
// establish Orders data adapter/data table
ordersAdapter = new OleDbDataAdapter();
ordersAdapter.SelectCommand = ordersCommand;
ordersTable = new DataTable();
ordersAdapter.Fill(ordersTable);
// establish Customers command object
customersCommand = new OleDbCommand("SELECT *
FROM

Customers", KWSalesConnection);
// establish Customers data adapter/data table
customersAdapter = new OleDbDataAdapter();
customersAdapter.SelectCommand = customersCommand;
customersTable = new DataTable();
customersAdapter.Fill(customersTable);
// bind controls to data table
txtFirstName.DataBindings.Add("Text", customersTable,
"FirstName");
txtLastName.DataBindings.Add("Text", customersTable,
"LastName");
txtAddress.DataBindings.Add("Text", customersTable,
"Address");
txtCity.DataBindings.Add("Text", customersTable, "City");

txtState.DataBindings.Add("Text", customersTable, "State");
txtZip.DataBindings.Add("Text", customersTable, "Zip");
// establish currency manager
customersManager = (CurrencyManager)

this.BindingContext[customersTable];
// establish Products command object
productsCommand = new OleDbCommand("SELECT * FROM

Products ORDER BY Description", KWSalesConnection);
// establish Products data adapter/data table
productsAdapter = new OleDbDataAdapter();
productsAdapter.SelectCommand = productsCommand;
productsTable = new DataTable();
productsAdapter.Fill(productsTable);
// bind combobox to data table
cboProducts.DataSource = productsTable;
cboProducts.DisplayMember = "Description";
cboProducts.ValueMember = "ProductID";
// establish Purchases command object
purchasesCommand = new OleDbCommand("SELECT *
FROM

Purchases ORDER BY OrderID", KWSalesConnection);
// establish Purchases data adapter/data table
purchasesAdapter = new OleDbDataAdapter();
purchasesAdapter.SelectCommand = purchasesCommand;
purchasesTable = new DataTable();
purchasesAdapter.Fill(purchasesTable);
// Fill customers combo box
FillCustomers();
orderNumber = 0;
NewOrder();

}

3. Add the shaded code to the frmKWSales_FormClosing method to save
the remaining data tables and dispose of the newly added objects:

private void frmKWSales_FormClosing(object sender,
FormClosingEventArgs e)
{

if (newCustomer)
{

MessageBox.Show("You must finish the current edit
before stopping.", "", MessageBoxButtons.OK,
MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save the tables to the database file
OleDbCommandBuilder ordersAdapterCommands =
new

OleDbCommandBuilder(ordersAdapter);
ordersAdapter.Update(ordersTable);
OleDbCommandBuilder customersAdapterCommands =
new

OleDbCommandBuilder(customersAdapter);
customersAdapter.Update(customersTable);
OleDbCommandBuilder productsAdapterCommands =
new

OleDbCommandBuilder(productsAdapter);
productsAdapter.Update(productsTable);
OleDbCommandBuilder purchasesAdapterCommands =
new

OleDbCommandBuilder(purchasesAdapter);
purchasesAdapter.Update(purchasesTable);

}
catch (Exception ex)
{

MessageBox.Show("Error saving database", "Save
Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}
// close the connection
KWSalesConnection.Close();
// dispose of the objects
ordersCommand.Dispose();
ordersAdapter.Dispose();
ordersTable.Dispose();
customersCommand.Dispose();
customersAdapter.Dispose();
customersTable.Dispose();
productsCommand.Dispose();
productsAdapter.Dispose();
productsTable.Dispose();
purchasesCommand.Dispose();
purchasesAdapter.Dispose();
purchasesTable.Dispose();

}
}

4. Add the single shaded line to the
cboCustomers_SelectedIndexChanged method to establish the
CustomerID variable:

private void cboCustomers_SelectedIndexChanged(object sender,
EventArgs e)
{

if (newCustomer)
return;

string ID;
int pl;
string s = cboCustomers.SelectedItem.ToString();
try

{
pl = s.IndexOf("(");
if (pl == -1)

return;
// extract ID from selected item
ID = s.Substring(pl + 1, s.Length - pl - 2);
customersTable.DefaultView.Sort = "CustomerID";
customersManager.Position =

customersTable.DefaultView.Find(ID);
customerID = Convert.ToInt64(ID);

}
catch (Exception ex)
{

MessageBox.Show("Could not find customer", "Search
Error", MessageBoxButtons.OK, MessageBoxIcon.Information);

}
}

5. Place this code in the btnSubmitOrder_Click event method:

private void btnSubmitOrder_Click(object sender, EventArgs e)
{

int j, q;
string ID;
// Make sure there is customer information
if (cboCustomers.SelectedIndex == -1)
{

MessageBox.Show("You need to select a customer.",
"Submit Error", MessageBoxButtons.OK,
MessageBoxIcon.Information);

return;
}
if (lstCart.Items.Count == 0)
{

MessageBox.Show("You need to select some items.",
"Submit Error", MessageBoxButtons.OK,
MessageBoxIcon.Information);

return;
}
// Submit purchases to database
DataRow newRow;
newRow = ordersTable.NewRow();
newRow["OrderID"] = lblOrderID.Text;
newRow["CustomerID"] = customerID;
newRow["OrderDate"] = lblDate.Text;
ordersTable.Rows.Add(newRow);
for (int i = 0; i < lstCart.Items.Count; i++)
{

newRow = purchasesTable.NewRow();
string s = lstCart.Items[i].ToString();
j = s.IndexOf(" ");
q = Convert.ToInt32(s.Substring(0, j));
ID = s.Substring(j + 1, 6);
newRow["OrderID"] = lblOrderID.Text;
newRow["ProductID"] = ID;
newRow["Quantity"] = q;
purchasesTable.Rows.Add(newRow);
// Update number sold
// find row with correct productid
int pr;
for (pr = 0; pr < productsTable.Rows.Count; pr++)
{

if
(productsTable.Rows[pr]["ProductID"].ToString().Equals(ID))

{
break;

}

}
productsTable.Rows[pr]["NumberSold"] =

Convert.ToInt32(productsTable.Rows[pr]["NumberSold"]) + q;
}
NewOrder();

}

Notice how this code implements the previously specified steps.

6. Save and run the application. You now have complete order taking and
saving capabilities. When running this application for a second time in
the same day, you will probably receive this error message when you
stop the application:

The OrderID field is based on the date. The second time you run the
application in the same day, duplicate OrderID values will be generated.
To avoid this, you can do one of two things. In frmKWSales_Load,
change the orderNumber variable to the last order number used
(remember to change it back to zero, eventually, though). Or, start each
running of the application with a new copy of the database. I know this is a
headache, but it is one of the typical headache’s programmers must endure
in testing their applications.

Printing an Invoice
As a last step, let’s add the ability to print an invoice for each order. We
will make this an option. And, we will use the Visual C# PrintDocument
object to create this database report. Pay close attention to the printing
code in the PrintInvoicePage method – it’s long, but straightforward. It
just goes through the form and pulls out the information it needs. The
complicated part is parsing the list box contents to obtain quantities,
product identification, description, and price information. Make sure you
know what all the string manipulation methods are doing. The easiest way
to do this is write out a string on paper and try the methods.

1. Add this line at the top of the code window:

using System.Drawing.Printing;

2. Add this code before the NewOrder() line in btnSubmitOrder_Click:

if (MessageBox.Show("Do you want a printed invoice?",
"Print Inquiry", MessageBoxButtons.YesNo,
MessageBoxIcon.Question) == DialogResult.Yes)
{

PrintInvoice();
}

3. Add a method named PrintInvoice. This creates the PrintDocument
object which prints the invoice using the PrintInvoicePage method:

private void PrintInvoice()
{

// Declare the document
PrintDocument recordDocument;
// Create the document and name it
recordDocument = new PrintDocument();

recordDocument.DocumentName = "KWSales Invoice";
// Add code handler
recordDocument.PrintPage += new

PrintPageEventHandler(this.PrintInvoicePage);
// Print document
recordDocument.Printer();
// Dispose of document when done printing
recordDocument.Dispose();

}

4. Add this code to the PrintInvoicePage method:

private void PrintInvoicePage(object sender,
PrintPageEventArgs e)
{

int y = 100;
string s, ti, q, id, desc, unit, t;
int j;
Font myFont = new Font("Courier New", 14, FontStyle.Bold);
// Print Heading
e.Graphics.DrawString("KIDware Order " +

lblOrderID.Text, myFont, Brushes.Black, 100, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString("Order Date " + lblDate.Text, myFont,
Brushes.Black, 100, y);
y += 2 * Convert.ToInt32(myFont.GetHeight(e.Graphics));
// Print buyer address
myFont = new Font("Courier new", 12, FontStyle.Regular);
e.Graphics.DrawString(txtFirstName.Text + " " +

txtLastName.Text, myFont, Brushes.Black, 100, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString(txtAddress.Text, myFont,
Brushes.Black, 100, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));

e.Graphics.DrawString(txtCity.Text + ", " +
txtState.Text + " " + txtZip.Text, myFont, Brushes.Black,
100, y);

y += 2 * Convert.ToInt32(myFont.GetHeight(e.Graphics));
// Print items purchased and totals
e.Graphics.DrawString("Qty ProductID Description

UnitTotal", myFont, Brushes.Black, 100, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString("--
------", myFont, Brushes.Black, 100, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
// Parse the shopping cart listings
for (int i = 0; i < lstCart.Items.Count; i++)
{

ti = lstCart.Items[i].ToString();
j = ti.IndexOf(" ");
q = ti.Substring(0, j);
id = ti.Substring(j + 1, 6);
desc = ti.Substring(j + 8, ti.Length - (j + 8));
j = desc.IndexOf("$");
unit = desc.Substring(j + 1, desc.Length - (j + 1));
desc = desc.Substring(0, j - 1);
if (desc.Length > 25)

desc = desc.Substring(0, 25);
s = BlankLine(56); s = MidLine(q, s, 3 - q.Length);
s = MidLine(id, s, 7);
s = MidLine(desc, s, 15);
s = MidLine(unit, s, 47 - unit.Length);
t = String.Format("{0:f2}", Convert.ToSingle(q) *
Convert.ToSingle(unit));
s = MidLine(t, s, 56 - t.Length);
e.Graphics.DrawString(s, myFont, Brushes.Black, 100, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));

}
e.Graphics.DrawString("--
------", myFont, Brushes.Black, 100, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
s = BlankLine(56);
s = MidLine("Total", s, 41);
s = MidLine("$" + lblTotal.Text, s, 55 - lblTotal.Text.Length);
e.Graphics.DrawString(s, myFont, Brushes.Black, 100, y);
e.HasMorePages = false;

}

5. Add these two general methods (BlankLine and MidLine) used to help
with the print formatting:

public string BlankLine(int n)
{

string s = "";
for (int i = 0; i < n; i++)
{

s += " ";
}
return (s);

}

The BlankLine method simply concatenates n spaces to form a returned
string variable s.

public string MidLine(string string1, string string2, int p)
{

string s = "";
// convert big string to character array
char[] sArray = string2.ToCharArray();
// put string1 in string2
for (int i = p; i < p + string1.Length; i++)
{

sArray[i] = string1[i - p];
}
// put array in string variable
for (int i = 0; i < string2.Length; i++)
{

s += sArray[i].ToString();
}
return (s);

}

This method takes the contents of string1 and places it in string2, starting
at position p. The result is returned in the string s. It is used for positioning
strings in desired columns.

6. Save and run the application (you may need a clean copy of the database
to do this). Enter orders and print them. Here’s the top of a printed
invoice:

The application is now complete.

Suggested Improvements
Even though the Sales Order Form Project is complete (the final version
is saved in Example 10-1 folder in VCSDB\Code\Class 10 folder), there
is always room for improvement. We’ll give you some of our ideas. I’m
sure you have some ideas too.

When running the application for the second time in a day, we noted
problems with generated duplicate OrderID values. This would not be a
problem if we start the application early in the day and leave it running all
day. If we need to stop the application and restart it, we need some way of
knowing what the last assigned orderNumber was. The best way to do
this is to establish a simple configuration file that reads the last
orderNumber when the application begins and writes it back to disk when
the application ends. Try adding this ability to the application. You will
also need logic to recognize a new day to allow restarting the counter at
zero.

As written, the application can only take orders. This is suitable for a
strictly ordering environment. A more complete system would allow the
review of past orders (and perhaps the editing of past orders). Try adding
the ability to find and display old orders. This should be a straightforward
modification – you just need some way to indicate what order you are
looking for. Do you want to search by order number, order date, customer
name, or some combination? Your SQL skills will come in handy here.

For practice, try creating a distribution package for this application. Design
an icon to represent the application. Make sure you include a clean copy of
the database with your package.

Example 10-1

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. Copy SQLKWSalesDB.mdf into your project’s Bin\Debug folder (you
may have to create it first). One option is to use the blank database from
Chapter 9 in the VCSDB\Databases folder. To use this, you would first
need to add some entries in the Products table. Or, you might like to
use the copy included with this example’s course code (in Example 10-
1 folder of the VCSDB\Code\Class 10 folder – if you downloaded
these notes, as opposed to having a CD-ROM copy, you should have
already downloaded this version of the database from our website as
explained in Chapter 2). Product information is included in this
database and there are a few customers and orders you can look at. We
use the latter in this example.

2. Use this using statement:

using System.Data.SqlClient;

3. Change all instances of OleDbConnection to SqlConnection
Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter
Change all instances of OleDbCommandBuilder to
SqlCommandBuilder

4. Use this connection object:

KWSalesConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS; AttachDbFilename=" +
Application.StartupPath + "\\SQLKWSalesDB.mdf; Integrated
Security=True; Connect Timeout=30; User Instance=True");

Example 10-2

Home Inventory Project
In this project, we build a database management system that lets you store
information about valuables around your home. The database will have
seven fields:

Item (description of item)
Location (where item is located)
Store (where item was purchased)
Date Purchased (when item was purchased)
Purchase Cost (how much we paid)
Serial Number (item serial number)
Photo File (path to photo of item)
Engraved (indicates whether item is engraved with identifying
information)

Development of the Home Inventory Project will proceed in the usual,
logical sequence. We first create the database. Next, the interface is built
which allows the user to view, edit, add, or delete records from the
database. Lastly, we add some code to create a printable list of information
in the database.

Home Inventory Database
In this application, the user enters specific information about each item in
the database. A single table will be used to hold the data. We will give the
steps to use Microsoft Access to create a database named
InventoryDB.accdb (refer to Chapter 9 for further details). If you don’t
have Access, you can try to create the database using ADOX as described
in the previous chapter. Or, you can just use the copy of
InventoryDB.accdb found in the VCSDB\Databases folder.

1. Start a new database (InventoryDB.accdb) in Access. Add a table in
design view. Add seven fields to the database. The information needed
to build the database is:

Field Name Field Type
Item Text (50 characters)
Location Text (50 characters)
Store Text (50 characters)
DatePurchased Date/Time
PurchaseCost Currency
SerialNumber Text (50 characters)
PhotoFile Text (200 characters)
Engraved Yes/No (Boolean)

Only the Item field is required.

2. Make the Item field a Primary key.

When done, the Table Structure appears as:

3. Close the table design view and name the database table Inventory.
Close Access to complete the database design.

Preliminaries
Start a new project in Visual C#. Copy InventoryDB.accdb into your
project’s Bin\Debug folder (you may have to create it first). Use either the
one just created in Access or the one found in the VCSDB\atabases
folder. Or, you might like to use the copy included with this example’s
course code (in Example 10-2 folder of the VCSDB\Code\Class 10
folder). Some inventory information is included in this database to give
you some things to look at. We use the latter in this example.

Home Inventory Interface
The home inventory interface will let the user view, edit, delete, or add
records to the database. Each field will be displayed on the interface form.

1. Place six labels, five text box controls, a check box and a date time
picker (used to select purchase date) on the form. Also, add a picture
box control with a label and button under it. The form should look
something like this:

2. Set these properties:

Form1:
Name frmInventory
FormBorderStyle Fixed Single
StartPosition CenterScreen

Text Home Inventory

label1:
Text Item:

textBox1:
Name txtItem
BackColor White
MaxLength 50

label2:
Text Location:

textBox2:
Name txtLocation
BackColor White
MaxLength 50

label3:
Text Store:

textBox3:
Name txtStore
BackColor White
MaxLength 50

label4:
Text Date Purchased:

dateTimePicker1:
Name dtpDatePurchased
Format Short

label5:
Text Purchase Cost:

textBox4:

Name txtPurchaseCost
BackColor White

label6:
Text Serial Number:

textBox5:
Name txtSerialNumber
BackColor White
MaxLength 50

checkBox1:
Name chkEngraved
Text Engraved

pictureBox1:
Name picItem
BorderStyle FixedSingle
SizeMode Zoom

label7:
Name lblPhotoFile
AutoSize False
BackColor LightYellow
BorderStyle Fixed3D
Text [Blank]

button1:
Name btnLoadPhoto
Text Load Photo

My finished form looks like this:

We’ll add more controls as we continue.

Database Connection
We need to open the inventory database and bind the controls to the
corresponding fields.

1. Place this line at the top of the code window to allow use of data
objects:

using System.Data.OleDb;

2. Place this code in the form level declarations to create the needed data
objects:

OleDbConnection inventoryConnection;
OleDbCommand inventoryCommand;
OleDbDataAdapter inventoryAdapter;
DataTable inventoryTable;
CurrencyManager inventoryManager;

3. Place this code in the frmInventory_Load event method:

private void InventoryForm_Load(object sender, EventArgs e)
{

// connect to sales database
inventoryConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + Application.StartupPath + "\\InventoryDB.accdb");

inventoryConnection.Open();
// establish inventory command object
inventoryCommand = new OleDbCommand("SELECT *
FROM

Inventory ORDER BY Item", inventoryConnection);
// establish inventory data adapter/data table

inventoryAdapter = new OleDbDataAdapter();
inventoryAdapter.SelectCommand = inventoryCommand;
inventoryTable = new DataTable();
inventoryAdapter.Fill(inventoryTable);
// bind controls
txtItem.DataBindings.Add("Text", inventoryTable, "Item");
txtLocation.DataBindings.Add("Text", inventoryTable,
"Location");
txtStore.DataBindings.Add("Text", inventoryTable, "Store");
dtpDatePurchased.DataBindings.Add("Text", inventoryTable,
"DatePurchased");
txtPurchaseCost.DataBindings.Add("Text", inventoryTable,
"PurchaseCost");
txtSerialNumber.DataBindings.Add("Text", inventoryTable,
"SerialNumber");
chkEngraved.DataBindings.Add("Checked", inventoryTable,
"Engraved");
lblPhotoFile.DataBindings.Add("Text", inventoryTable,
"PhotoFile");
// establish currency manager
inventoryManager = (CurrencyManager)

this.BindingContext[inventoryTable];
}

This code connects to the INVENTORY database file (in the application
folder) and creates the data objects needed to view the Inventory table. It
also binds the controls to the fields. Note in particular binding of the date
time picker and check box controls.

4. Place this code in the frmInventory_FormClosing event method to
save any changes back to the database and to clean up objects:

private void frmInventory_FormClosing(object sender,
FormClosingEventArgs e)
{

try

{
// save the update Inventory table
OleDbCommandBuilder inventoryAdapterCommands = new

OleDbCommandBuilder(inventoryAdapter);
inventoryAdapter.Update(inventoryTable);

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Saving Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
// close the connection
inventoryConnection.Close();
// dispose of the objects
inventoryCommand.Dispose();
inventoryAdapter.Dispose();
inventoryTable.Dispose();

}

5. Save the application (saved in Example 10-2 folder in
VCSDB\Code\Class 10 folder) and run it. If you used the example
database included with the notes, you should see (if you used the empty
database, you’ll see nothing but blanks):

This is the first record in the sample database listing all the fields. The
photo doesn’t display. We need some code for this – we’ll do that now.

Display Photo
The database doesn’t store the actual photos of items in the inventory, but
a path to the file with the photo. In this example, all photos are stored in
the VCSDB\Code\Class 10\Example 10-2\InventoryPhotos folder. As
we continue with the interface, we will add the ability for a user to specify
where photos are located.

1. Add this general method (ShowPhoto) to display a photo based on the
PhotoFile field in the database. We use error trapping in case the file
cannot be opened:

private void ShowPhoto()
{

// display photo
if (!lblPhotoFile.Text.Equals(""))
{

try
{

picItem.Image = Image.FromFile(lblPhotoFile.Text);
}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Loading Photo",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}
else
{

picItem.Image = null;
}

}

2. Add this single line at the end of the frmInventory_Load method to
display the initial photo:

ShowPhoto();

3. Resave and rerun the application. The photo of the bicycle should now
appear:

At this point, we are able to display all the fields in our database. The
interface still needs work, but it’s a beginning. We need to add
navigational abilities, editing capability, and the ability to add and delete
records.

Database Navigation
As a first step, we need to ability to move from one record to another in
the home inventory database. This is something we’ve done many times
before.

1. Add four buttons to the form. Set these properties:

button1:
Name btnFirst
Text |<
FontSize 10
TabStop False

button2:
Name btnPrevious
Text <
FontSize 10
TabStop False

button3:
Name btnNext
Text >
FontSize 10
TabStop False

button4:
Name btnLast
Text >|
FontSize 10
TabStop False

The form looks like this:

2. Add this code to the Click event methods for each of the new buttons
(notice that anytime a new record is displayed, we need to reload the
photo):

private void btnFirst_Click(object sender, EventArgs e)
{

inventoryManager.Position = 0;
ShowPhoto();

}

private void btnPrevious_Click(object sender, EventArgs e)
{

inventoryManager.Position--;
ShowPhoto();

}

private void btnNext_Click(object sender, EventArgs e)
{

inventoryManager.Position++;
ShowPhoto();

}

private void btnLast_Click(object sender, EventArgs e)
{

inventoryManager.Position = inventoryManager.Count - 1;
ShowPhoto();

}

3. Save and run the application. Make sure the navigation buttons work
correctly. Here’s another listing in the sample included with the notes:

Editing Records
We now add the ability to edit records in the home inventory database.

1. Lock all text boxes (ReadOnly = true) on the form (we will decide
when editing is allowed). Also disable the date time picker and the
button to load photos (Enabled = false).

2. Add three buttons to the form. Use these properties:

button1:
Name btnEdit
Text Edit
TabStop False

button2:
Name btnSave
Text Save
Enabled False
TabStop False

button3:
Name btnCancel
Text Cancel
Enabled False
TabStop False

The form now looks like this:

3. Add a variable to the form level declarations to track system state:

string myState;

4. Add a method named SetState to establish the application state:

private void SetState(string appState)
{

myState = appState;
switch (myState)
{

case "View":
btnFirst.Enabled = true;
btnPrevious.Enabled = true;
btnNext.Enabled = true;
btnLast.Enabled = true;
btnEdit.Enabled = true;
btnSave.Enabled = false;

btnCancel.Enabled = false;
txtItem.ReadOnly = true;
txtLocation.ReadOnly = true;
txtStore.ReadOnly = true;
dtpDatePurchased.Enabled = false;
txtPurchaseCost.ReadOnly = true;
txtSerialNumber.ReadOnly = true;
chkEngraved.Enabled = false;
btnLoadPhoto.Enabled = false;
break;

default: // "Edit"
btnFirst.Enabled = false;
btnPrevious.Enabled = false;
btnNext.Enabled = false;
btnLast.Enabled = false;
btnEdit.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
txtItem.ReadOnly = false;
txtLocation.ReadOnly = false;
txtStore.ReadOnly = false;
dtpDatePurchased.Enabled = true;
txtPurchaseCost.ReadOnly = false;
txtSerialNumber.ReadOnly = false;
chkEngraved.Enabled = true;
btnLoadPhoto.Enabled = true;
break;

}
txtItem.Focus();

}

This method has two modes: View and Edit. In View mode (mode when
the form loads), we can just look at the data. In Edit mode, data can be
changed, and then saved (or the edit operation canceled).

5. Place this line of code at the end of the frmInventory_Load event
method:

SetState("View");

This puts the form in View mode initially.

6. Place this code in the btnEdit_Click event method:

private void btnEdit_Click(object sender, EventArgs e)
{

SetState("Edit");
}

This places the form in Edit mode and allows the data table to be edited.

7. Place this code in the btnSave_Click event method:

private void btnSave_Click(object sender, EventArgs e)
{

string savedItem = txtItem.Text;
int savedRow;
inventoryManager.EndCurrentEdit();
inventoryTable.DefaultView.Sort = "Item";
savedRow = inventoryTable.DefaultView.Find(savedItem);
inventoryManager.Position = savedRow;
SetState("View");

}

This codes save any changes and returns to View mode. It sets the
currency manager position to the saved record when done.

8. Place this code in the btnCancel_Click method:

private void btnCancel_Click(object sender, EventArgs e)
{

inventoryManager.CancelCurrentEdit();

ShowPhoto();
SetState("View");

}

This code cancels the edit operation, displays the correct photo and resets
the application state to View mode.

9. Save and run the application. Make sure the Edit function works, as it
should. Also, test the Save and Cancel functions. Here’s the form in
Edit mode:

Try changing and saving information. Notice how the date time picker
control works.

Load Photo
We can edit any fields on the form except the displayed photo. Let’s add
that capability.

1. Add an open file dialog control to the project. Use these properties:

openFileDialog1:
Name dlgOpen
DefaultExtension jpg
FileName [blank]
Filter Photos (*.jpg)|*.jpg

2. When the user clicks the Load Photo button, the open file dialog box
will appear allowing choice of a photo to display. Add this code to the
btnLoadPhoto_Click event method:

private void btnLoadPhoto_Click(object sender, EventArgs e)
{

try
{

if (dlgOpen.ShowDialog() == DialogResult.OK)
{

lblPhotoFile.Text = dlgOpen.FileName;
ShowPhoto();

}
}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Opening Photo",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

}

3. Save and run the application. Click Edit. Then, click Load Photo; this
dialog appears:

Select a photo and click Open.

Here I changed the bike to a television:

When I click Cancel, it returns to the bike.

Adding Records
Now, we add the capability of adding new records to the home inventory
database.

1. Add a button to the form under the Edit button. Use these properties:

Name btnAdd
Text Add
TabStop False

The form will look like this:

2. Add this line to the form level declarations to save the current record (in
case the Add operation is cancelled):

int myBookmark;

3. Place this code in the btnAdd_Click event method:

private void btnAdd_Click(object sender, EventArgs e)
{

myBookmark = inventoryManager.Position;
// clear picture
picItem.Image = null;
SetState("Add");
inventoryManager.AddNew();

}

The code first saves the bookmark. It then clears the picture, places the
application in Add mode and adds a record.

4. Modify the btnCancel_Click method to differentiate canceling while
editing from canceling while adding a record (the new code is shaded):

private void btnCancel_Click(object sender, EventArgs e)
{

inventoryManager.CancelCurrentEdit();
if (myState.Equals("Add"))
{

inventoryManager.Position = myBookmark;
}
ShowPhoto();
SetState("View");

}

5. Modify the SetState event method to account for the new Add mode
(identical to Edit mode, new code is shaded):

private void SetState(string appState)
{

myState = appState;

switch (myState)
{

case "View":
btnFirst.Enabled = true;
btnPrevious.Enabled = true;
btnNext.Enabled = true;
btnLast.Enabled = true;
btnEdit.Enabled = true;
btnSave.Enabled = false;
btnCancel.Enabled = false;
btnAdd.Enabled = true;
txtItem.ReadOnly = true;
txtLocation.ReadOnly = true;
txtStore.ReadOnly = true;
dtpDatePurchased.Enabled = false;
txtPurchaseCost.ReadOnly = true;
txtSerialNumber.ReadOnly = true;
chkEngraved.Enabled = false;
btnLoadPhoto.Enabled = false;
break;

default: // "Edit", "Add"
btnFirst.Enabled = false;
btnPrevious.Enabled = false;
btnNext.Enabled = false;
btnLast.Enabled = false;
btnEdit.Enabled = false;
btnSave.Enabled = true;
btnCancel.Enabled = true;
btnAdd.Enabled = false;
txtItem.ReadOnly = false;
txtLocation.ReadOnly = false;
txtStore.ReadOnly = false;
dtpDatePurchased.Enabled = true;

txtPurchaseCost.ReadOnly = false;
txtSerialNumber.ReadOnly = false;
chkEngraved.Enabled = true;
btnLoadPhoto.Enabled = true;
break;

}
txtItem.Focus();

}

6. Save the application and run it. Click Add. You will see this:

Notice the fields are not cleared as they should be when adding a new
record to the database. What’s wrong? As of this writing, this is a
documented bug in Visual C#. It occurs when binding a check box to a
currency manager. The relevant link is:

http://support.microsoft.com/kb/326440

We need to work our way around this bug. This is something we must
often do in programming –find ways around bugs and problems. Since the

http://support.microsoft.com/kb/326440

problem lies with the binding of the check box, we will remove this
binding when adding a record, then rebind after the addition is saved. Stop
the application.

7. Add the shaded code to the btnAdd_Click event procedure (removes
the binding from the check box and removes any check mark):

private void btnAdd_Click(object sender, EventArgs e)
{

myBookmark = inventoryManager.Position;
// clear picture
picItem.Image = null;
// remove binding from checkbox
chkEngraved.DataBindings.Clear();
chkEngraved.Checked = false;
SetState("Add");
inventoryManager.AddNew();

}

Add this shaded code to the btnSave_Click event procedure (manually
sets database field and re-establishes data binding):

private void btnSave_Click(object sender, EventArgs e)
{

string savedItem = txtItem.Text;
int savedRow;
inventoryManager.EndCurrentEdit();
if (myState.Equals("Add"))
{

inventoryTable.Rows[inventoryManager.Count - 1]
["Engraved"] = chkEngraved.Checked;
chkEngraved.DataBindings.Add("Checked",
inventoryTable, "Engraved");

}
inventoryTable.DefaultView.Sort = "Item";

savedRow = inventoryTable.DefaultView.Find(savedItem);
inventoryManager.Position = savedRow;
SetState("View");

}

Lastly, add this shaded code to the btnCancel_Click event procedure
(reestablishes data bindings if cancelled while adding a record):

private void btnCancel_Click(object sender, EventArgs e)
{

inventoryManager.CancelCurrentEdit();
if (myState.Equals("Add"))
{

inventoryManager.Position = myBookmark;
chkEngraved.DataBindings.Add("Checked",

inventoryTable, "Engraved");
}
ShowPhoto();
SetState("View");

}

8. Save and run the application again. The fields will now be blank as
desired. Type in new values (make sure you type a valid cost or you’ll
receive an error message). Click Save. The new record will appear. I’ve
added my TIVO unit to the inventory:

Make sure the Cancel function works as it should.

Deleting Records
The final management function needed is the ability to delete records from
the home inventory database.

1. Add a button to the form next to the Add button. Use these properties:

Name btnDelete
Text Delete
TabStop False

The form will look like this:

2. Add this code to the btnDelete_Click event method:

private void btnDelete_Click(object sender, EventArgs e)

{
if (MessageBox.Show("Are you sure you want to delete

this record?", "Delete", MessageBoxButtons.YesNo,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2)
== DialogResult.Yes)

{
inventoryManager.RemoveAt(inventoryManager.Position);
ShowPhoto();

}
SetState("View");

}

This code confirms the deletion. If Yes, the deletion is done and the
controls are bound to another record, necessitating loading the appropriate
photo. If No, nothing happens.

3. Add code to the SetState method to set the btnDelete Enabled property
to true in View mode and false in Add/Edit mode.

4. Save the application and run it. Click Add. Add a record. Click Save.
Now try deleting the record. You should see:

Test your application, responding both Yes and No to the message box.
Make sure everything works properly.

Entry Validation
Recall entry validation checks for proper characters in the data fields. In
this database, most of the fields can contain any characters. There is only
one exceptions PurchaseCost field can only contain numeric characters
and a decimal point. Here we implement this restriction. And, we’ll also
implement the ability to allow pressing <Enter> to move us from one field
to the next. We’ll start at the top and work our way down.

1. Add this code to the txtItem_KeyPress event:

private void txtItem_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int) e.KeyChar == 13)
txtLocation.Focus();

}

When the user presses <Enter>, focus is set on the next text box control
(txtLocation).

2. Add this code to the txtLocation_KeyPress event:

private void txtLocation_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
txtStore.Focus();

}

When the user presses <Enter>, focus is set on the next text box control
(txtStore).

3. Add this code to the txtStore_KeyPress event:

private void txtStore_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
{

if (dtpDatePurchased.Enabled)
dtpDatePurchased.Focus();

else
txtPurchaseCost.Focus();

}
}

When the user presses <Enter>, focus is set on the date time picker
(dtpDatePurchased), if it is enabled. Otherwise, focus is set on the next
text box control (txtPurchaseCost).

4. Add this code to the dtpDatePurchased_KeyPress event:

private void dtpDatePurchased_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
txtPurchaseCost.Focus();

}

When the user presses <Enter>, focus is set on the next text box control
(txtPurchaseCost).

5. Add this code to the txtPurchaseCost_KeyPress event:

private void txtPurchaseCost_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((e.KeyChar >= '0' && e.KeyChar <= '9') ||
(int)e.KeyChar == 8)

e.Handled = false;

else if ((int)e.KeyChar == 13)
{

txtSerialNumber.Focus();
e.Handled = false;

}
else if (e.KeyChar == '.')
{

if (txtPurchaseCost.Text.IndexOf(".") == -1)
e.Handled = false;

else
e.Handled = true;

}
else
{

e.Handled = true;
}

}

When the user presses <Enter>, focus is set on the next text box control
(txtSerialNumber). It also restricts inputs to numbers, the backspace and
a single decimal point.

6. Add this code to the txtSerialNumber_KeyPress event:

private void txtSerialNumber_KeyPress(object sender,
KeyPressEventArgs e)
{

if ((int)e.KeyChar == 13)
{

if (btnLoadPhoto.Enabled)
btnLoadPhoto.Focus();

else
txtItem.Focus();

}

}

When the user presses <Enter>, focus is set on the Load Photo button
(btnLoadPhoto) is it is enabled. If the button is not enabled, focus returns
to the top control (txtItem).

7. Save and run the application. Try moving from field to field with the
<Enter> key in both View and Edit modes. Test the key trapping
implemented in the Purchase Cost field.

Input Validation
There is only one validation rule: the Item field cannot be empty since it is
a primary key.

1. Add the shaded lines of code to the btnSave_Click method to check
that a value for Item has been entered:

private void btnSave_Click(object sender, EventArgs e)
{

// Check for Item
if (txtItem.Text.Trim().Equals(""))
{

MessageBox.Show("You must enter an Item description.",
"Input Error", MessageBoxButtons.OK,
MessageBoxIcon.Information);

txtItem.Focus();
return;

}
string savedItem = txtItem.Text;
int savedRow;
inventoryManager.EndCurrentEdit();
if (myState.Equals("Add"))
{

inventoryTable.Rows[inventoryManager.Count - 1]
["Engraved"] = chkEngraved.Checked;
chkEngraved.DataBindings.Add("Checked",
inventoryTable, "Engraved");

}
inventoryTable.DefaultView.Sort = "Item";
savedRow = inventoryTable.DefaultView.Find(savedItem);

inventoryManager.Position = savedRow;
SetState("View");

}

If the Item field is blank, the user is given a message to that effect.

2. Save and run the application. Click Add New. Click Save. A message
box saying the Item field is blank should appear:

Type an item description. Click Save again. The entry should be accepted.

Inventory Report
We have a great interface to get data into our home inventory database.
Now, let’s add the ability to get data out of the database. We need a
database report. The report will be simple. For each record, a listing of all
fields will be displayed. The listing can be previewed before printing.

1. Open the home inventory application and add a button and a print
preview dialog control to the project. Set these properties.

button1:
Name btnPrint
Text Print
TabStop False

printPreviewDialog1:
Name dlgPreview

The form will look like this:

2. Add this line at the top of the code window:

using System.Drawing.Printing;

3. Add the PageNumber variable to the form level declarations:

int pageNumber;

4. Add code to the SetState method to set the btnPrint Enabled property
to true in View mode and false in Add/Edit mode.

5. Add this code to the btnPrint_Click event method:

private void btnPrint_Click(object sender, EventArgs e)
{

// Declare the document
PrintDocument inventoryDocument;
// Create the document and name it
inventoryDocument = new PrintDocument();
inventoryDocument.DocumentName = "Home Inventory";

// Add code handler
inventoryDocument.PrintPage += new

PrintPageEventHandler(this.PrintInventory);
// Print document in preview control
pageNumber = 1;
int savedPosition = inventoryManager.Position;
dlgPreview.Document = inventoryDocument;
dlgPreview.ShowDialog();
// Dispose of document when done printing
inventoryDocument.Dispose();
inventoryManager.Position = savedPosition;
ShowPhoto();

}

This code sets up the PrintDocument (using the PrintInventory method;
developed next) and displays it in the print preview control.

6. Add this code to the PrintInventory method:

private void PrintInventory(object sender,
PrintPageEventArgs e)
{

// move through records, printing each one
inventoryManager.Position = pageNumber - 1;
ShowPhoto();
// print header
Font myFont = new Font("Arial", 14, FontStyle.Bold);
int y = e.MarginBounds.Top + 50;
e.Graphics.DrawString("Home Inventory (" +

DateTime.Now.ToShortDateString() + ") - Page " +
pageNumber.ToString(), myFont, Brushes.Black,
e.MarginBounds.Left, y);

y += 2 * Convert.ToInt32(myFont.GetHeight(e.Graphics));
// 'print text information

myFont = new Font("Arial", 12, FontStyle.Regular);
e.Graphics.DrawString("Item:", myFont,

Brushes.Black, e.MarginBounds.X, y);
e.Graphics.DrawString(txtItem.Text, myFont,

Brushes.Black, e.MarginBounds.X + 150, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString("Location:", myFont, Brushes.Black,

e.MarginBounds.X, y);
e.Graphics.DrawString(txtLocation.Text, myFont,

Brushes.Black, e.MarginBounds.X + 150, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString("Store:", myFont,

Brushes.Black, e.MarginBounds.X, y);
e.Graphics.DrawString(txtStore.Text, myFont,

Brushes.Black, e.MarginBounds.X + 150, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString("Date Purchased:", myFont,

Brushes.Black, e.MarginBounds.X, y);
e.Graphics.DrawString(dtpDatePurchased.Text, myFont,

Brushes.Black, e.MarginBounds.X + 150, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString("Purchase Cost:", myFont,

Brushes.Black, e.MarginBounds.X, y);
e.Graphics.DrawString("$" + String.Format("{0:f2}",

txtPurchaseCost.Text), myFont, Brushes.Black,
e.MarginBounds.X + 150, y);

y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString("Serial Number:", myFont,

Brushes.Black, e.MarginBounds.X, y);
e.Graphics.DrawString(txtSerialNumber.Text, myFont,

Brushes.Black, e.MarginBounds.X + 150, y);
y += 50;
// print picture (4 inches wide, height based on

height/width ratio of image)
int h = Convert.ToInt32(400 * picItem.Image.Height /

picItem.Image.Width);
e.Graphics.DrawImage(picItem.Image, e.MarginBounds.X, y,

400, h);
pageNumber++;
if (pageNumber <= inventoryManager.Count)

e.HasMorePages = true;
else
{

e.HasMorePages = false;
pageNumber = 1;

}
}

On each page, a header is printed along with a listing of the fields and the
item picture.

7. Save and run the application. Click Print. The print preview control will
appear with all pages of the inventory:

At this point, the user can choose to obtain a hard copy of the report if
desired. Here’s the top of the Ford Focus page:

Stopping the Application
Lastly, we add controls and code to allow us to elegantly exit from the
home inventory application.

1. Add a button to the form next to the Print button. Use these properties:

Name btnExit
Text Exit
TabStop False

The form will look like this:

2. Add code to the SetState method to set the btnExit Enabled property
to true in View mode and false in Add/Edit mode.

3. Add this code to the btnExit_Click event method:

private void btnExit_Click(object sender, EventArgs e)
{

this.Close();
}

4. Add the shaded code to the frmInventory_FormClosing event method
(we won’t stop the application if editing a record):

private void frmInventory_FormClosing(object sender,
FormClosingEventArgs e)
{

if (myState.Equals("Edit") || myState.Equals("Add"))
{

MessageBox.Show("You must finish the current edit
before stopping.", "", MessageBoxButtons.OK,
MessageBoxIcon.Information);

e.Cancel = true;
}
else
{

try
{

// save the update Inventory table
OleDbCommandBuilder inventoryAdapterCommands =
new

OleDbCommandBuilder(inventoryAdapter);
inventoryAdapter.Update(inventoryTable);

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Saving
Database",

MessageBoxButtons.OK, MessageBoxIcon.Error);
}

// close the connection
inventoryConnection.Close();
// dispose of the objects
inventoryCommand.Dispose();
inventoryAdapter.Dispose();
inventoryTable.Dispose();

}
}

5. Save and run the application. Try exiting (click the X in the upper right
corner of the form) the application while editing a record. This should
appear:

Make sure the Exit button works too.

Suggested Improvements
The Home Inventory Project is now complete (the final version is saved in
Example 10-2 folder in VCSDB\Code\Class 10 folder). It was fun and
easy to build. And, there is still room for improvement. Some of our ideas
follow.

The database file (InventoryDB.accdb) is built into the application. Users
might like to have separate inventory files for separate locations. Perhaps
they have rental properties they would like to keep track of. You could
modify the application to allow the user to specify the database file they
want to work with. We do this in the Weather Monitor application
(Example 10-3). The steps would be the same here.

Add some search capabilities to the application. For very large inventories,
it might be helpful to search for particular items or serial numbers. You
have the ability to add this feature.

For very small databases, there’s a chance the user might accidentally
delete the last remaining record in the database. We have nothing in our
code to prevent such an occurrence and if a user tries it, an error message
will appear. Can you modify the application to handle deletion of all
records?

Add an icon to the form, develop on-line help, create a distribution
package and pass the program out to your friends and neighbors. Everyone
could use a home inventory program. Their feedback could help you
improve the application into a commercially viable program.

Example 10-2

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. Use Server Explorer to create a database named
SQLInventoryDB.mdf. Or, you can just use the copy of
SQLInventoryDB.mdf found in the VCSDB\Databases folder. Start
Server Explorer in Visual Studio. Create a new SQL Server database
(SQLInventoryDB.mdf). Add a new table. Add seven fields (columns)
to the database. The information needed to build the database is:

Column Name Field Type
Item varchar(50)
Location varchar(50)
Store varchar(50)
DatePurchased datetime
PurchaseCost money
SerialNumber varchar(50)
PhotoFile varchar(200)
Engraved bit (Boolean)

Only the Item field cannot allow a null.

2. Make the Item field a Primary key. When done, the Table Structure
appears as:

3. Close the table design view and name the database table Inventory.
Close Server Explorer to complete the database design. If you
installed SQL Server using default settings, the finished file will be
found in:

C:\Program Files\Microsoft SQL
Server\MSSQL12.SQLEXPRESS\MSSQL\DATA

4. Copy SQLInventoryDB.mdf into your project’s Bin\Debug folder
(you may have to create it first). Use either the one just created in with
Server Explorer or the one found in the VCSDB\Databases folder. Or,
you might like to use the copy included with this example’s course code
(in Example 10-2 folder of the VCSDB\Code\Class 10 folder – if you
downloaded these notes, as opposed to having a CD-ROM copy, you
should have already downloaded this version of the database from our
website as explained in Chapter 2). Some inventory information is
included in this database to give you some things to look at. We use the
latter in this example.

5. Use this using statement:

using System.Data.SqlClient;

6. Change all instances of OleDbConnection to SqlConnection
Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter
Change all instances of OleDbCommandBuilder to
SqlCommandBuilder

7. Use this connection object:

inventoryConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS; AttachDbFilename=" +
Application.StartupPath + "\\SQLInventoryDB.mdf;
Integrated Security=True; Connect Timeout=30; User
Instance=True");

Example 10-3

Weather Monitor Project
In this last sample project, we build an application that lets you track daily
high and low temperatures and precipitation amounts (if any). We will
follow many steps in building the application, from development of the
database to creation of a distribution package. The steps followed are
similar to those you would use to develop a commercial database
application.

The steps followed to build the Weather Monitor are:

∘ Building and testing of the Visual C# interface
∘ Creation of an empty database using code
∘ Database reports
∘ Development of a help system
∘ Designing a project icon
∘ Creation of a distribution package

The interface will allow the user to enter high and low temperatures and
precipitation for any dates they choose within a particular year. This
information will be saved in the database. Plotted results will be available,
as will summary information regarding maximum, minimum, and average
values.

Weather Monitor Interface
In this application, for each day in a single year, the user enters a high
temperature, a low temperature, a precipitation amount, and any comment.
The database manager will automatically provide the date. Unlike the
other sample projects, we do not need a database structure to begin this
project. When the user starts a new weather monitoring file, we will build
the new empty database file using Visual C# code and ADOX technology
(like in Chapter 9). We will use a tab control as the major component of
the Weather Monitor interface. The control will have three tabs: one to
view and edit the weather data, one to view a temperature data graph, and
one to view a precipitation data graph. Each tab in this control operates
like the Visual C# panel control. Each tab’s control must be drawn in the
appropriate tab region.

1. Start a new application. Add a tab control to the form. Set these
properties:

Form1:
Name frmWeather
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Weather Monitor

tabControl1:
Name tabWeather
Dock Fill
FontSize 10

tabPage1:
Name tabPageData
Text Record Weather Data

tabPage2:

Name tabPageTemp
Text View Temperature Data

tabPage3:
Name tabPagePrecip
Text View Precipitation Data

2. Save the application (saved in Example 10-3 folder in
VCSDB\Code\Class 10 folder) – you can run it to see how the tab
switching works. The form looks like this when running (to give you an
idea of how large it should be):

Record Weather Data Tab
On this tab, we will have the ability to start a new file or open an existing
file. The data will be displayed in a grid control for viewing and editing.
Here’s what the finished tab will look like (this should guide you while
placing controls and setting properties):

1. Make sure the Record Weather Data tab is active. Add a data grid
view, a month calendar control, an open file dialog control, a save file
dialog control and two panel controls. Set these properties:

dataGridView1:
Name grdWeather

monthCalendar1:

Name calDate
MaxSelectionCount 1

openFileDialog1:
Name dlgOpen
DefaultExt accdb
FileName [blank]
Filter Access Files (*.accdb)|*.accdb

saveFileDialog1:
Name dlgSave
DefaultExt accdb
Filter Access Files (*.accdb)|*.accdb
OverwritePrompt False

panel1:
Name pnlNew
BackColor Light Gray
BorderStyle FixedSingle

panel2:
Name pnlFiles
BackColor Light Gray
BorderStyle FixedSingle

2. In the pnlNew panel, add a button and a combo box. Set these
properties:

button1:
Name btnNew
FontSize 8
Text New File

comboBox1:
Name cboYear
FontSize 8

FontBold True
DropdownStyle DropdownList

3. In the pnlFiles panel, add four buttons. Set these properties:

button1:
Name btnOpen
FontSize 8
Text Open File

button2:
Name btnPrintData
FontSize 8
Text Print Data

button3:
Name btnHelpData
FontSize 8
Text Help

button4:
Name btnExitData
FontSize 8
Text Exit

4. Save and run the application. Make sure all controls are on first tab and
not just floating around somewhere on the form.

Weather Monitor Database
Let’s explain how this will all work. The grid will display the weather data
and the calendar control will provide a visual representation of the current
date. The user will be able to start a new weather file or open an existing
file. If starting a new file (click New File), the user selects the year using
the displayed combo box control. The user then chooses a name for that
file using the save file dialog. An empty Access database with that name
will be built in code. If using Access, we will build the empty database in
code using ADOX technology. If working with SQL Server databases, we
could do something similar (using advanced SQL statements) but that is
beyond the scope of this particular course. For SQL Server databases, we
will copy a provided empty database to the database named by the user
(see the section Using SQL Server Databases).

Let’s write that code using ADOX technology.

1. Referring back to Example 9-2, add a reference to the ADOX library.
Add this line at the top of the code window to allow use of this library:

using ADOX;

2. Add this code to the btnNew_Click event method:

private void btnNew_Click(object sender, EventArgs e)
{

Catalog weatherDatabase = new Catalog();
Table databaseTable;
try
{

// get filename
if (dlgSave.ShowDialog() == DialogResult.OK)
{

weatherDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + dlgSave.FileName);

// create table
databaseTable = new Table();
databaseTable.Name = "Weather";
weatherDatabase.Tables.Append(databaseTable);

}
}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Creating Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally
{

weatherDatabase = null;
}

}

This code creates an empty database (user selected name) with a table
named Weather.

3. Save and run the project. Click New File – the save file dialog appears:

Choose a location and name (it can’t be a name already used for a
database). I chose WeatherTestDB in my c:\junk folder. Click Save. Stop
the application.

Go to the directory you selected and your new database should be there.
Here’s mine:

This is an empty database. We’ll use our programming skills to add
information – defining the fields and pre-populating the date information.

Database Fields
Let’s add the fields. There are five fields in the database. They are:

Field Name Field Type FieldSize
WeatherDate Date/Time 20
HighTemp Single 10
LowTemp Single 10
Precip Single 10
Comment Text 50

Only the WeatherDate field is required (it is the primary key).

1. Add the shaded code to the btnNew_Click event method. This code
adds each field, removes the requirement field from all but the
WeatherDate field, then defines the primary key and index.

private void btnNew_Click(object sender, EventArgs e)
{

Catalog weatherDatabase = new Catalog();
Table databaseTable;
try
{

// get filename
if (dlgSave.ShowDialog() == DialogResult.OK)
{

weatherDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + dlgSave.FileName);

// create table
databaseTable = new Table();
databaseTable.Name = "Weather";

// add fields
databaseTable.Columns.Append("WeatherDate",

DataTypeEnum.adDate, 20);
databaseTable.Columns.Append("HighTemp",

DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("LowTemp",

DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("Precip",

DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("Comment",

DataTypeEnum.adWChar, 50);
databaseTable.Columns["HighTemp"].Attributes =

ColumnAttributesEnum.adColNullable;
databaseTable.Columns["LowTemp"].Attributes =
ColumnAttributesEnum.adColNullable;

databaseTable.Columns["Precip"].Attributes =
ColumnAttributesEnum.adColNullable;

databaseTable.Columns["Comment"].Attributes =
ColumnAttributesEnum.adColNullable;

// primary key
databaseTable.Keys.Append("PK_Weather",

KeyTypeEnum.adKeyPrimary, "WeatherDate", null, null);
databaseTable.Indexes.Append("WeatherDate",
"WeatherDate");

weatherDatabase.Tables.Append(databaseTable);
}

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Creating Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally

{
weatherDatabase = null;

}
}

2. Save and run the application. Create a new database. You must choose a
unique name. If you don’t you will see:

Each time you create a database, you have to use a different name – this is
a protective mechanism to keep you from completely wiping out any
previously created database. If I open a newly created weather database in
Access (using design view), I see all the fields of the Weather table have
been correctly defined:

We now have a complete Access database we can use with our weather
monitoring project. To use this database, we open it and manage it using
the same ADO .NET objects we’ve used throughout these notes. We begin
by pre-populating the date field with fixed values.

Adding Date Values and Editing
Features
We continue our database design by pre-populating the date field using the
year selected in the combo box control. We use the familiar ADO .NET
data objects to accomplish this task. We also add editing features
incorporating key trapping in the data grid view.

1. Place this code in the frmWeather_Load event method:

private void frmWeather_Load(object sender, EventArgs e)
{

for (int y = 1900; y <= 2100; y++)
{

cboYear.Items.Add(y.ToString());
}
cboYear.Text = calDate.SelectionStart.Year.ToString();
tabWeather.SelectedTab = tabPageData;
grdWeather.AutoSizeColumnsMode =

DataGridViewAutoSizeColumnsMode.Fill;
grdWeather.AllowUserToAddRows = false;

}

This places years we need in the combo box control and displays the first
tab. We also set some grid control properties.

2. Add the usual line at the top of the code window:

using System.Data.OleDb;

3. Add these general declarations for the needed data objects:

OleDbConnection weatherConnection;

OleDbCommand weatherCommand;
OleDbDataAdapter weatherAdapter;
DataTable weatherTable;

4. Add the shaded code to the btnNew_Click event method to fill in the
Date column with each day of the selected year:

private void btnNew_Click(object sender, EventArgs e)
{

Catalog weatherDatabase = new Catalog();
Table databaseTable;
// close any open database
CloseConnection();
try
{

// get filename
if (dlgSave.ShowDialog() == DialogResult.OK)
{

weatherDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + dlgSave.FileName);

// create table
databaseTable = new Table();
databaseTable.Name = "Weather";
// add fields
databaseTable.Columns.Append("WeatherDate",

DataTypeEnum.adDate, 20);
databaseTable.Columns.Append("HighTemp",

DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("LowTemp",

DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("Precip",

DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("Comment",

DataTypeEnum.adWChar, 50);
databaseTable.Columns["HighTemp"].Attributes =

ColumnAttributesEnum.adColNullable;
databaseTable.Columns["LowTemp"].Attributes =

ColumnAttributesEnum.adColNullable;
databaseTable.Columns["Precip"].Attributes =

ColumnAttributesEnum.adColNullable;
databaseTable.Columns["Comment"].Attributes =

ColumnAttributesEnum.adColNullable;
// primary key
databaseTable.Keys.Append("PK_Weather",

KeyTypeEnum.adKeyPrimary, "WeatherDate", null, null);
databaseTable.Indexes.Append("WeatherDate",
"WeatherDate");
weatherDatabase.Tables.Append(databaseTable);
// connect to database
OpenConnection(dlgSave.FileName);
// fill dates
DateTime tableDate = new

DateTime(Convert.ToInt32(cboYear.Text), 1, 1);
DateTime nextYear = new

DateTime(Convert.ToInt32(cboYear.Text) + 1, 1, 1);
int nDays = (nextYear - tableDate).Days;
DataRow newRow;
for (int n = 1; n <= nDays; n++)
{

newRow = weatherTable.NewRow();
newRow["WeatherDate"] = tableDate;
weatherTable.Rows.Add(newRow);
tableDate += new TimeSpan(1, 0, 0, 0);

}
}

}

catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Creating Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally
{

weatherDatabase = null;
}

}

The new code first disconnects from any current database (using
CloseConnection). The code then connects to the newly created database
and forms all the data objects (OpenConnection). Rows are added to the
weatherTable object filling in the WeatherDate field. After each row is
added, the corresponding adapter is updated to save the new row to the
database.

5. Add the general method CloseConnection that closes the any open
database and saves changes prior to creating another database:

private void CloseConnection()
{

try
{

if (!(weatherConnection == null))
{

if (weatherConnection.State == ConnectionState.Open)
{

OleDbCommandBuilder weatherAdapterCommand = new
OleDbCommandBuilder(weatherAdapter);

weatherAdapter.Update(weatherTable);
weatherConnection.Close();
weatherConnection.Dispose();
weatherCommand.Dispose();

weatherAdapter.Dispose();
weatherTable.Dispose();
weatherAdapterCommand.Dispose();

}
}

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Saving Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

6. Add the general method OpenConnection that connects to the database,
creates the data objects and binds the data grid control (grdWeather) to
the table object.

private void OpenConnection(string fName)
{

try
{

weatherConnection = new
OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + fName);

weatherConnection.Open();
// establish command object
weatherCommand = new OleDbCommand("SELECT *
FROM

Weather ORDER BY WeatherDate", weatherConnection);
// establish data adapter/data table
weatherAdapter = new OleDbDataAdapter();
weatherAdapter.SelectCommand = weatherCommand;
weatherTable = new DataTable();
weatherAdapter.Fill(weatherTable);

grdWeather.DataSource = weatherTable;
grdWeather.Columns[0].ReadOnly = true;

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Opening Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

7. Add this code to the frmWeather_FormClosing event method to save
an open database when exiting the program:

private void frmWeather_FormClosing()
{

// close connection
CloseConnection();

}

8. Handling key trapping with the data grid view control is a little tricky.
First, add this code to the grdWeather_EditingControlShowing event
method:

private void grdWeather_EditingControlShowing(object sender,
DataGridViewEditingControlShowingEventArgs e)
{

this.grdWeather.EditingControl.KeyPress -= new
KeyPressEventHandler(this.grdWeather_KeyPress);

this.grdWeather.EditingControl.KeyPress += new
KeyPressEventHandler(this.grdWeather_KeyPress);
}

This code attaches the current cell to a KeyPress method (named
grdWeather_KeyPress).

9. Add this code to the grdWeather_KeyPress event:

private void grdWeather_KeyPress(object sender,
KeyPressEventArgs e)
{

// numeric entries only in first three columns
int currentColumn = grdWeather.CurrentCell.ColumnIndex;
if (currentColumn > 0 && currentColumn < 4)
{

if ((e.KeyChar >= '0' && e.KeyChar <= '9') ||
e.KeyChar == '-' || e.KeyChar == '.' || (int) e.KeyChar == 8)

e.Handled = false;
else

e.Handled = true;
}

}

This insures only numbers, a decimal point, or a minus sign can be entered
into the temperature and precipitation fields (columns 1 through 3).

10. Save and run the application. Start a New File. You should see the grid
now appears with the date values filled in:

Try inputting some values. Check out the key trapping code. Notice how
the grid navigation works. Once you exit the program, your changes will
be saved to the newly formed database. Now, of course, you need some
way to open the saved file.

Opening Database Files
1. Place the code to open an existing database file in the btnOpen_Click

event method:

private void btnOpen_Click(object sender, EventArgs e)
{

try
{

// close connection if open
CloseConnection();
// get filename
if (dlgOpen.ShowDialog() == DialogResult.OK)
{

// connect to database
OpenConnection(dlgOpen.FileName);

}
}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Opening File",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

Here, we close a connection if it exists. Then, we retrieve a filename from
the user and open the selected file.

2. Save and run the application. Try to open a file. There are two example
databases in the VCSDB\Code\Class 10\Example 10-3 folder. The
files are Sea02DB.accdb and Sea03DB.accdb and contain weather for
my hometown of Seattle for the years 2002 and 2003. Opening

Sea02DB.accdb reveals:

We’re almost done with this tab – one more change is needed. It would be
nice to be able to select a date on the calendar and have the corresponding
entry appear in the data grid. Likewise, if we select a grid row, that date
should be displayed on the calendar. That is, we want the date displays to
be coordinated with each other.

Date Display Coordination
1. Place this code in the calDate_DateChanged event method:

private void calDate_DateChanged(object sender,
DateRangeEventArgs e)
{

// match selected date to grid (if possible)
if (!(weatherConnection == null))
{

weatherTable.DefaultView.Sort = "WeatherDate";
int dateRow =

weatherTable.DefaultView.Find(calDate.SelectionStart);
if (dateRow != -1)

grdWeather.CurrentCell = grdWeather[1, dateRow];
}

}

When the date changes on the calendar control, the corresponding grid row
will be displayed (assuming there is a grid and the date is in the grid).

2. Use this code in the grdWeather_CellClick event method:

private void grdWeather_CellClick(object sender,
DataGridViewCellEventArgs e)
{

calDate.SelectionStart =
Convert.ToDateTime(grdWeather[0,
grdWeather.CurrentCell.RowIndex].Value);
}

This code coordinates the date shown in a selected row in the grid with the

calendar control.

4. We need to make sure the dates are coordinated initially. Place this line
of code:

grdWeather_CellClick(null, null);

in two places: (1) after the OpenConnection() line in the btnOpen_Click
event method, (2) after the for loop adding dates in the btnNew_Click
event method.

3. Save and run the application. Open an existing database or one of the
samples. Notice how the date displayed in the grid matches the
calendar. Here’s what I see when I load Sea03DB.accdb and scroll
down the grid a bit:

We have not coded the Print Data, Help or Exit buttons. This will be
done later. Let’s now look at the other two tabs in the project.

View Temperature Data Tab
When this tab is clicked, we will provide a plot of the high and low
temperatures and some summary statistics. You can choose what season of
the year to plot temperatures for. Here’s the finished tab layout to assist
you in building the interface:

1. In design mode, select the View Temperature Data tab. Place a panel
control on the form. It will be used to hold a plot of temperature data –
it should take up a little more than one-half the width of the tab. Set
these properties:

panel1:
Name pnlTempPlot
BackColor White
BorderStyle FixedSingle

2. On the same tab, add another panel, and in the panel control, add 19
label controls (yes, I said 19!), a group box, and three buttons. Set these
properties (default names may differ – refer to the finished form for
each control)

panel1:
BackColor Light Gray

label1:
Text Temperature Summary
Font Arial, Bold, Size 10

label2:
Text High
Font Arial, Bold, Size 10

label3:
Text Low
Font Arial, Bold, Size 10

label4:
Text High
Font Arial, Size 10

label5:
Name lblTHH
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

label6:
Text Ave

Font Arial, Size 10

label7:
Name lblTHA
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

label8:
Text Low
Font Arial, Size 10

label9:
Name lblTHL
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

label10:
Text Trend
Font Arial, Size 10

label11:
Name lblTHT
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue

Font Arial, Size 10

Text [Blank]
TextAlign MiddleCenter

label12:
Text High
Font Arial, Size 10

label13:
Name lblTLH
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

label14:
Text Ave
Font Arial, Size 10

label15:
Name lblTLA
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

label16:
Text Low
Font Arial, Size 10

label17:

Name lblTLL
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

label18:
Text Trend
Font Arial, Size 10

label19:
Name lblTLT
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

button1:
Name btnPrintTemp
FontSize 8
Text Print Data

button2:
Name btnHelpTemp
FontSize 8
Text Help

button3:

Name btnExitTemp
FontSize 8

Text Exit

groupBox1:
Text Plot Options
BackColor Dark Gray
Font Arial, Bold, Size 10
ForeColor Yellow

3. In the group box, place five radio buttons. Use these properties:

radioButton1:
Name rdoTempYear
Text Entire Year
Checked True
Font Arial, Size 10
ForeColor White

radioButton2:
Name rdoTempWinter
Text Winter (Jan-Mar)
Font Arial, Size 10
ForeColor White

radioButton3:
Name rdoTempSpring
Text Spring (Apr-Jun)
Font Arial, Size 10
ForeColor White

radioButton4:
Name rdoTempSummer
Text Summer (Jul-Sep)
Font Arial, Size 10

ForeColor White

radioButton5:
Name rdoTempAutumn
Text Autumn (Oct-Dec)
Font Arial, Size 10
ForeColor White

The tab layout is complete. Time for coding! When the tab is selected, we
will form the required plot and compute the needed summary statistics. We
will do the summaries first.

Temperature Summary Statistics
1. Add a general method TemperatureData to the project and use this

code:

private void TemperatureData()
{

// make sure there is a data table
if(weatherConnection == null)

return;
float temp;
int xStart = 0, xEnd = 0, nDays, isLeap;
float tempHH, tempHL;
float tempLH, tempLL;
float sumH, sumL;
int nH, nL;
double sxH, sx2H, sxyH;
double sxL, sx2L, sxyL;
float a1H, a1L;
bool noData;
float[] highTemp = new float[366];
float[] lowTemp = new float[366];
if (weatherTable.Rows.Count == 365)

isLeap = 0;
else

isLeap = 1;
switch (tempPlot)
{

case 0:
xStart = 0;
xEnd = 364 + isLeap;

break;
case 1:

xStart = 0;
xEnd = 89 + isLeap;
break;

case 2:
xStart = 90 + isLeap;
xEnd = 180 + isLeap;
break;

case 3:
xStart = 181 + isLeap;
xEnd = 272 + isLeap;
break;

case 4:
xStart = 273 + isLeap;
xEnd = 364 + isLeap;
break;

}
nDays = xEnd - xStart + 1;
// temperature data
tempHH = -1000; tempHL = 1000;
tempLH = -1000; tempLL = 1000;
sumH = 0; nH = 0;
sumL = 0; nL = 0;
sxH = 0; sx2H = 0; sxyH = 0;
sxL = 0; sx2L = 0; sxyL = 0;
for (int x = xStart; x <= xEnd; x++)
{

if (weatherTable.Rows[x]["HighTemp"] != DBNull.Value)
{

temp =
Convert.ToSingle(weatherTable.Rows[x]["HighTemp"]);

highTemp[x - xStart] = temp;

if (temp > tempHH)
tempHH = temp;

if (temp < tempHL)
tempHL = temp;

sumH += temp;
nH++;
sxH += x;
sx2H += x * x;
sxyH += x * temp;

}
else
{

highTemp[x - xStart] = -1000.0F;
}
if (weatherTable.Rows[x]["LowTemp"] != DBNull.Value)
{

temp =
Convert.ToSingle(weatherTable.Rows[x]["LowTemp"]);

lowTemp[x - xStart] = temp;
if (temp > tempLH)

tempLH = temp;
if (temp < tempLL)

tempLL = temp;
sumL += temp;
nL++;
sxL += x;
sx2L += x * x;
sxyL += x * temp;

}
else
{

lowTemp[x - xStart] = -1000.0F;
}

}
if (tempLL >= tempHH)

noData = true;
else

noData = false;
if (!noData)
{

lblTHH.Text = String.Format("{0:f1}", tempHH);
lblTHL.Text = String.Format("{0:f1}", tempHL);
lblTLH.Text = String.Format("{0:f1}", tempLH);
lblTLL.Text = String.Format("{0:f1}", tempLL);
if (nH > 1)
{

a1H = Convert.ToSingle((nH * sxyH - sxH * sumH) /
(nH * sx2H - sxH * sxH));

if (a1H >= 0)
lblTHT.Text = "+" + String.Format("{0:f1}", (nDays
- 1) * a1H);

else
lblTHT.Text = String.Format("{0:f1}", (nDays - 1) *
a1H);

}
if (nL > 1)
{

a1L = Convert.ToSingle((nL * sxyL - sxL * sumL) /
(nL * sx2L - sxL * sxL));

if (a1L >= 0)
lblTLT.Text = "+" + String.Format("{0:f1}", (nDays
- 1) * a1L);

else
lblTLT.Text = String.Format("{0:f1}", (nDays - 1) *
a1L);

}
lblTHA.Text = String.Format("{0:f1}", sumH / nH);

lblTLA.Text = String.Format("{0:f1}", sumL / nL);
}
else
{

lblTHH.Text = "---";
lblTLH.Text = "---";
lblTHL.Text = "---";
lblTLL.Text = "---";
lblTHA.Text = "---";
lblTLA.Text = "---";
lblTHT.Text = "---";
lblTLT.Text = "---";

}
}

This code goes through every record in the database table and stores
temperature values for plotting in the HighTemp and LowTemp arrays.
The code computes summary information (highs, lows, averages). Notice
how the IsDBNull function is used to only include records with actual
numeric values. If there is no value, the plot value is set to -1000.0 as a
flag for the plotting code. Don’t worry about the equations for the ‘trend’
value (the A1H and A1L values). If you want to impress your friends, you
can tell them it uses a linear least squares computation to determine the
slope of the values.

2. To bring up this screen, add this code to the
tabWeather_SelectedIndexChanged event method:

private void tabWeather_SelectedIndexChanged(object
sender, EventArgs e)
{

switch (tabWeather.SelectedIndex)
{

case 1:
TemperatureData();
break;

}
}

3. Add this variable to the form level declarations (it tells us which plot
option is selected):

int tempPlot = 0;

4. Place this code in the rdoTempPlot_CheckedChanged event method
(handles clicks on all radio buttons):

private void rdoTempPlot_CheckedChanged(object sender,
EventArgs e)
{

RadioButton whichButton = (RadioButton) sender;
switch (whichButton.Name)
{

case "rdoTempYear":
tempPlot = 0;
break;

case "rdoTempWinter":
tempPlot = 1;
break;

case "rdoTempSpring":
tempPlot = 2;
break;

case "rdoTempSummer":
tempPlot = 3;
break;

case "rdoTempAutumn":
tempPlot = 4;
break;

}
TemperatureData();

}

5. Save the application. Run it. Try entering some data to plot. When I load
Sea03DB.accdb and choose the Entire Year option, here’s what I get:

Now, let’s tackle the missing data plot.

Temperature Plot
Older versions of Visual Studio had a control called the Chart Control. It
allowed plotting of data in several formats. This control is no longer
included with Visual C#. There are third party tools available for plotting,
but cost money. So, how do we get a plot of the temperature values in our
project? We’ll write the code ourselves! Well, actually, I’ll give you the
code.

Included in the VCSDB\Code\Class 10\Example 10-3 is a file (a Visual
C# class) named TempPlot.cs. This file contains the code to do our
plotting task using a TempPlot object. The TempPlot object will draw line
charts of the high and low temperatures in the blank panel on the View
Temperature Data tab. It uses several Visual C# graphics methods to
draw the plot and save it to a bitmap to allow printing. We won’t go into
the details of the routine – you can look through the code if you’d like. Just
use it like any other object we’ve used in this course. The techniques used
to develop the code are taught in a course named Learn Visual C# which
is available on our website (http:\\www.kidwaresoftware.com).

1. Add the TempPlot.cs class to your project. To do this, right-click the
weather monitor project name in the Solution Explorer window. Select
Add, then Existing Item. Navigate to the TempPlot.cs file and click
Add. The file will now appear in your project’s Solution Explorer
window.

2. Add these four lines of code at the bottom of the TemperatureData
general method:

TempPlot temperaturePlot = new TempPlot(pnlTempPlot);
if (!noData)

temperaturePlot.Draw(nDays, highTemp, lowTemp);

These lines first create a TempPlot object named temperaturePlot using
the panel control pnlTempPlot. If there is data, it is then plotted (using the

http://www.kidwaresoftware.com

highTemp and lowTemp arrays) with the Draw method. It’s that simple!

3. Save and run the application. Create a file and enter some data or open
an existing file. Click the View Temperature Data tab. Here’s the
plotted data for the Sea03DB.accdb file:

Now, let’s create a very similar tab for the precipitation data.

View Precipitation Data Tab
When this tab is clicked, we will provide a plot of precipitation amounts
and some summary statistics. You can choose what season of the year to
plot precipitation for. Here’s the finished tab layout to assist you in
building the interface:

1. In design mode, select the View Precipitation tab. Like we did for the
temperature tab, place a panel control on the form for the plot. It should
take up a little more than one-half the tab width. Set these properties:

panel1:
Name pnlPrecipPlot
BackColor White
BorderStyle FixedSingle

2. On the same tab, add another panel, and in the panel control, add four
label controls, a group box, and three buttons. Set these properties
(default names may differ – refer to the finished form for each control)

panel1:
BackColor Light Gray

label1:
Text Precipitation Summary
Font Arial, Bold, Size 10

label1:
Text High
Font Arial, Size 10

label2:
Name lblPH
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10
Text [Blank]
TextAlign MiddleCenter

label3:
Text Total
Font Arial, Size 10

label4:
Name lblPT
AutoSize False
BorderStyle Fixed3D
BackColor White
ForeColor Blue
Font Arial, Size 10

Text [Blank]
TextAlign MiddleCenter

button1:
Name btnPrintPrecip
FontSize 8
Text Print Data

button2:
Name btnHelpPrecip
FontSize 8
Text Help

button3:
Name btnExitPrecip
FontSize 8
Text Exit

groupBox1:
Text Plot Options
BackColor Dark Gray
Font Arial, Bold, Size 10

4. In the group box, place five radio buttons. Use these properties:

radioButton1:
Name rdoPrecipYear
Text Entire Year
Checked True
Font Arial, Size 10
ForeColor White

radioButton2:
Name rdoPrecipWinter
Text Winter (Jan-Mar)
Font Arial, Size 10

ForeColor White

radioButton3:
Name rdoPrecipSpring
Text Spring (Apr-Jun)
Font Arial, Size 10
ForeColor White

radioButton4:
Name rdoPrecipSummer
Text Summer (Jul-Sep)
Font Arial, Size 10
ForeColor White

radioButton5:
Name rdoPrecipAutumn
Text Autumn (Oct-Dec)
Font Arial, Size 10
ForeColor White

The tab layout is complete. When the tab is selected, we will form the
required plot and compute the needed summary statistics. We will do the
summaries first.

Precipitation Summary Statistics
1. Add a general method named PrecipitationData to the project and use

this code:

private void PrecipitationData()
{

// make sure there is a data table
if (weatherConnection == null)

return;
float prec;
int xStart = 0, xEnd = 0, nDays, isLeap;
float precH, precT;
bool noData;
float[] precip = new float[366];
if (weatherTable.Rows.Count == 365)

isLeap = 0;
else

isLeap = 1;
switch (precipPlot)
{

case 0:
xStart = 0;
xEnd = 364 + isLeap;
break;

case 1:
xStart = 0;
xEnd = 89 + isLeap;
break;

case 2:
xStart = 90 + isLeap;

xEnd = 180 + isLeap;
break;

case 3:
xStart = 181 + isLeap;
xEnd = 272 + isLeap;
break;

case 4:
xStart = 273 + isLeap;
xEnd = 364 + isLeap;
break;

}
nDays = xEnd - xStart + 1;
// precipitation data
precH = -1000; precT = 0;
noData = true;
for (int x = xStart; x <= xEnd; x++)
{

if (weatherTable.Rows[x]["Precip"] != DBNull.Value)
{

prec =
Convert.ToSingle(weatherTable.Rows[x]["Precip"]);

noData = false;
}
else
{

prec = 0.0F;
}
precip[x - xStart] = prec;
if (prec > precH)

precH = prec;
precT += prec;

}
if (!noData)

{
lblPH.Text = String.Format("{0:f2}", precH);
lblPT.Text = String.Format("{0:f1}", precT);

}
else
{

lblPH.Text = "---";
lblPT.Text = "---";

}
}

Similar to the temperature plot, this code simply goes through every record
in the database and stores points for plotting in the precip array. Any null
value is assigned a value of zero. It also computes summary information.

2. To bring up the information on this tab, modify the
tabWeather_SelectedIndexChanged event method (new code is
shaded):

private void tabWeather_SelectedIndexChanged(object
sender, EventArgs e)
{

switch (tabWeather.SelectedIndex)
{

case 1:
TemperatureData();
break;

case 2:
PrecipitationData();
break;

}
}

3. Add this variable to the form level declarations (it tells us which plot
option is selected):

int precipPlot = 0;

4. Place this code in the rdoPrecipPlot_CheckedChanged event method
(handles click on all precipitation radio buttons):

private void rdoPrecipPlot_CheckedChanged(object sender,
EventArgs e)
{

RadioButton whichButton = (RadioButton)sender;
switch (whichButton.Name)
{

case "rdoPrecipYear":
precipPlot = 0;
break;

case "rdoPrecipWinter":
precipPlot = 1;
break;

case "rdoPrecipSpring":
precipPlot = 2;
break;

case "rdoPrecipSummer":
precipPlot = 3;
break;

case "rdoPrecipAutumn":
precipPlot = 4;
break;

}
PrecipitationData();

}

5. Save the application. Run it. Try entering some data to plot. When I load
Sea03DB.accdb, here’s what I get for a year’s worth of precipitation:

We complete the tab by adding a bar chart of the precipitation.

Precipitation Plot
Like the Temperature Plot, we’ll give you the code to draw the
Precipitation Plot. Included in the VCSDB\Code\Class 10\Example 10-3
is a file (a Visual C# class) named PrecipPlot.cs. This file contains the
code to do our plotting task using a PrecipPlot object. The PrecipPlot
object will draw a bar chart of the precipitation data in the blank panel on
the View Precipitation Data tab

1. Add the PrecipPlot.cs class to your project. To do this, right-click the
project name in the Solution Explorer window. Select Add, then
Existing Item. Navigate to the PrecipPlot.cs file and click Add. The
file will now appear in your project’s Solution Explorer window.

2. Add these two lines of code at the bottom of the PrecipitationData
general method:

PrecipPlot precipitationPlot = new
PrecipPlot(pnlPrecipPlot);
if (!noData)

precipitationPlot.Draw(nDays, precip);

These lines first create a PrecipPlot object named precipitationPlot using
the panel control pnlPrecipPlot. If there is data to plot, it is done (using
the precip array) with the Draw method.

3. Save and run the application. Create a file and enter some data or open
an existing file. Click the View Precipitation Data tab. Here’s the
plotted data for the Sea02DB.accdb file:

Weather Monitor Printed Reports
Each of the tabs in the Weather Monitor application has a Print Data tab.
On the first tab, we want a printed listing of all temperatures, precipitation,
and any comment. On the other tabs, we want a copy of the displayed plot
and summary information. Here, we develop those reports, doing the data
listing report first. But first, let’s build some boilerplate.

1. Add a print preview dialog control. Name it dlgPreview.

2. Add a variable to the form level declarations to keep track of page
number:

int pageNumber;

3. Add this line at the top of the code window:

using System.Drawing.Printing;

4. Add this code to the btnPrint_Click event method (handles clicking on
all three print buttons):

private void btnPrint_Click(object sender, EventArgs e)
{

// make sure there is a data table
if (weatherConnection == null)

return;
// Declare the document
PrintDocument recordDocument;
// Create the document and name it
recordDocument = new PrintDocument();
recordDocument.DocumentName = "Weather Data";
// Add code handler based on button pressed
Button whichButton = (Button) sender;

switch (whichButton.Name)
{

case "btnPrintData":
recordDocument.PrintPage += new

PrintPageEventHandler(this.PrintDataReport);
break;

case "btnPrintTemp":
recordDocument.PrintPage += new

PrintPageEventHandler(this.PrintTemperatureReport);
break;

case "btnPrintPrecip":
recordDocument.PrintPage += new

PrintPageEventHandler(this.PrintPrecipitationReport);
break;

}
// Preview document
pageNumber = 1;
dlgPreview.Document = recordDocument;
dlgPreview.ShowDialog();
// Dispose of document when done printing
recordDocument.Dispose();

}

Depending on which button is clicked, the corresponding print document
is formed and attached to the proper method for printing
(PrintDataReport, PrintTemperatureReport, or
PrintPrecipitationReport).

Weather Data Report
In this report, we will print a multiple page listing of all the data in the
database in a tabulated form.

1. Add this code to the PrintDataReport method:

private void PrintDataReport(object sender,
PrintPageEventArgs e)
{

Font myFont;
int y;
const int daysPerPage = 40;
myFont = new Font("Courier New", 14, FontStyle.Bold);
y = e.MarginBounds.Top + 50;
// Print header
e.Graphics.DrawString("Weather Data - Page " +

pageNumber.ToString(), myFont, Brushes.Black,
e.MarginBounds.Left, y);

y += 2 * Convert.ToInt32(myFont.GetHeight(e.Graphics));
myFont = new Font("Courier New", 12, FontStyle.Bold |

FontStyle.Underline);
e.Graphics.DrawString("Date", myFont, Brushes.Black,

e.MarginBounds.Left, y);
e.Graphics.DrawString("HighTemp", myFont, Brushes.Black,

e.MarginBounds.Left + 125, y);
e.Graphics.DrawString("LowTemp", myFont, Brushes.Black,

e.MarginBounds.Left + 225, y);
e.Graphics.DrawString("Precip", myFont, Brushes.Black,

e.MarginBounds.Left + 325, y);
e.Graphics.DrawString("Comment", myFont, Brushes.Black,

e.MarginBounds.Left + 425, y);
myFont = new Font("Courier New", 12, FontStyle.Regular);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
int n1 = 1 + (pageNumber - 1) * daysPerPage;
int n2 = n1 + daysPerPage - 1;
if (n2 > weatherTable.Rows.Count)

n2 = weatherTable.Rows.Count;
string s;
for (int n = n1; n <= n2; n++)
{

e.Graphics.DrawString(Convert.ToDateTime(weatherTable.Rows
[n - 1]["WeatherDate"]).ToShortDateString(), myFont,
Brushes.Black, e.MarginBounds.X, y);

if (weatherTable.Rows[n - 1]["HighTemp"] !=
DBNull.Value)

s = String.Format("{0:f1}", weatherTable.Rows[n - 1]
["HighTemp"]);

else
s = "";

e.Graphics.DrawString(s, myFont, Brushes.Black,
e.MarginBounds.X + 200 - e.Graphics.MeasureString(s,
myFont).Width, y);

if (weatherTable.Rows[n - 1]["LowTemp"] !=
DBNull.Value)

s = String.Format("{0:f1}", weatherTable.Rows[n - 1]
["LowTemp"]);

else
s = "";

e.Graphics.DrawString(s, myFont, Brushes.Black,
e.MarginBounds.X + 300 - e.Graphics.MeasureString(s,
myFont).Width, y);

if (weatherTable.Rows[n - 1]["Precip"] != DBNull.Value)
s = String.Format("{0:f1}", weatherTable.Rows[n - 1]

["Precip"]);
else

s = "";
e.Graphics.DrawString(s, myFont, Brushes.Black,

e.MarginBounds.X + 375 - e.Graphics.MeasureString(s,
myFont).Width, y);

s = weatherTable.Rows[n - 1]["Comment"].ToString();
// limit length of comment to 20 characters
if (s.Length > 20)

s = s.Substring(0, 20);
e.Graphics.DrawString(s, myFont, Brushes.Black,

e.MarginBounds.X + 425, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));

}
if (n2 != weatherTable.Rows.Count)
{

pageNumber++;
e.HasMorePages = true;

}
Else
{

e.HasMorePages = false;
pageNumber = 1;

}
}

This goes through each record in the database table and formats a single
line listing. Blanks are inserted if fields are null. The report is over 10
pages for a full year of data.

2. Save and run the application. Click Print Data on the Record Weather
Data tab. Here’s the first page of a report for the Sea03DB.accdb
sample database shown in the print preview dialog control:

Temperature Data Report
Here, we want to obtain a printed copy of the information displayed in the
View Temperature Data tab. The information we want to print is: the
summary information on all temperatures and the graphs in the panel
control.

1. Put this code in the PrintTemperatureReport method:

private void PrintTemperatureReport(object sender,
PrintPageEventArgs e)
{

Font myFont = new Font("Courier New", 12,
FontStyle.Regular);

int y = 125;
e.Graphics.DrawString("Weather Monitor", myFont,

Brushes.Black, e.MarginBounds.X, y);
y += Convert.ToInt32(2 * myFont.GetHeight(e.Graphics));
myFont = new Font("Courier New", 12, FontStyle.Regular |

FontStyle.Underline);
e.Graphics.DrawString("Temperatures:", myFont,

Brushes.Black, e.MarginBounds.X, y);
y += Convert.ToInt32(2 * myFont.GetHeight(e.Graphics));
myFont = new Font("Courier New", 12, FontStyle.Regular);
e.Graphics.DrawString("High Temperature", myFont,

Brushes.Black, 150, y);
e.Graphics.DrawString("Low Temperature", myFont,

Brushes.Black, 400, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString(" High = " + lblTHH.Text, myFont,

Brushes.Black, 150, y);

e.Graphics.DrawString(" High = " + lblTLH.Text, myFont,
Brushes.Black, 400, y);

y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString(" Ave = " + lblTHA.Text, myFont,

Brushes.Black, 150, y);
e.Graphics.DrawString(" Ave = " + lblTLA.Text, myFont,

Brushes.Black, 400, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString(" Low = " + lblTHL.Text, myFont,

Brushes.Black, 150, y);
e.Graphics.DrawString(" Low = " + lblTLL.Text, myFont,

Brushes.Black, 400, y);
y += Convert.ToInt32(myFont.GetHeight(e.Graphics));
e.Graphics.DrawString(" Trend = " + lblTHT.Text, myFont,

Brushes.Black, 150, y);
e.Graphics.DrawString(" Trend = " + lblTLT.Text, myFont,

Brushes.Black, 400, y);
if (pnlTempPlot.BackgroundImage != null)

e.Graphics.DrawImage(pnlTempPlot.BackgroundImage,
150,

300, 500, Convert.ToInt32(500 *
pnlTempPlot.ClientSize.Height /
pnlTempPlot.ClientSize.Height));

e.HasMorePages = false;
}

The summary information is printed first. Then the DrawImage method is
used to print the graph (the height to width ratio is maintained).

2. Save and run the application. Load a database. Go to the View
Temperature Data tab. Click Print Data. The report for
Sea03DB.accdb looks like this (full year of data):

Precipitation Data Report
Lastly, we need to obtain a printed copy of the information displayed in
the View Precipitation Data tab. The information we want to print is: the
summary information on precipitation and the graph in the panel control.

1. Put this code in the PrintPrecipitationReport method:

private void PrintPrecipitationReport(object sender,
PrintPageEventArgs e)
{

Font myFont = new Font("Courier New", 12,
FontStyle.Regular);

int y = 125;
e.Graphics.DrawString("Weather Monitor", myFont,

Brushes.Black, e.MarginBounds.X, y);
y += Convert.ToInt32(2 * myFont.GetHeight(e.Graphics));
myFont = new Font("Courier New", 12, FontStyle.Regular |

FontStyle.Underline);
e.Graphics.DrawString("Precipitation:", myFont,

Brushes.Black, e.MarginBounds.X, y);
y += Convert.ToInt32(2 * myFont.GetHeight(e.Graphics));
myFont = new Font("Courier New", 12, FontStyle.Regular);
e.Graphics.DrawString(" High = " + lblPH.Text, myFont,

Brushes.Black, 150, y);
e.Graphics.DrawString(" Total = " + lblPT.Text, myFont,

Brushes.Black, 400, y);
if (pnlPrecipPlot.BackgroundImage != null)

e.Graphics.DrawImage(pnlPrecipPlot.BackgroundImage,
150, 250, 500, Convert.ToInt32(500 *
pnlTempPlot.ClientSize.Height /

pnlTempPlot.ClientSize.Height));
e.HasMorePages = false;

}

The summary information is printed first. Then the DrawImage method is
used to print the graph (the height to width ratio is maintained).

2. Save and run the application. Load a database. Go to the View
Precipitation Data tab. Click Print Data. The report for
Sea03DB.accdb looks like this (full year of data):

Weather Monitor Help System
The last thing left to code in the Weather Monitor application is the Help
button. We will develop a simple help system for our application and write
the code necessary to access it. We will use the HTML Help Workshop
discussed in Chapter 5. Review that material if needed.

1. Create a help topic file using FrontPage or similar product (saved as
weather.htm in the VCSDB\Code\Class 10\Example 10-3\HelpFile
folder). The file I developed is:

2. In the HTML Help Workshop, prepare a project file (weather.hhp)
including the topic file just created. Compile the help file
(weather.chm). All these files are saved in the VCSDB\Code\Class
10\Example 10-3\HelpFile folder. Copy weather.chm to the Weather
Monitor projects’ Bin\Debug folder.

3. Load the Weather Monitor application. Add a help provider control.
Name it hlpWeather. Set the HelpNavigator property of frmWeather
to TableofContents.

4. Add the shaded code to the frmWeather_Load method. This points to
the help file:

private void frmWeather_Load(object sender, EventArgs e)
{

// point to help file
hlpWeather.HelpNamespace = Application.StartupPath +

"\\weather.chm";
for (int y = 1900; y <= 2100; y++)
{

cboYear.Items.Add(y.ToString());
}
cboYear.Text = calDate.SelectionStart.Year.ToString();
tabWeather.SelectedTab = tabPageData;
grdWeather.AutoSizeColumnsMode =

DataGridViewAutoSizeColumnsMode.Fill;
grdWeather.AllowUserToAddRows = false;

}

5. Use this code in the btnHelp_Click event method. All three help
buttons are handled by this method:

private void btnHelp_Click(object sender, EventArgs e)
{

Help.ShowHelp(this, hlpWeather.HelpNamespace);
}

6. Lastly, add this code to the btnExit_Click event method, which handles
the Click event for any of the three help buttons:

private void btnExit_Click(object sender, EventArgs e)
{

this.Close();
}

7. Save and run the application. Make sure the Help button works in all
three tabs of the tab control. Make sure <F1> brings up help. Here’s
what you should see:

Make sure all the Exit buttons work too.

Weather Monitor Icon
The coding for the Weather Monitor application is now complete. A goal
is to distribute this application to other users for their comments. Before
doing that, let’s get rid of the rather ugly Visual Basic icon stuck on our
form.

Find an icon on the internet or design your own using the Microsoft Paint
program. We include one you might like. It is saved as weather.ico in the
VBDB\General\Class 10\Example 10-3 folder.

Go to Visual Basic and load your application. Go to the Properties
window and click the form’s Icon property. Select your new icon. The
icon should now appear in the upper left hand corner of your form when
you run the program. It’s much nicer than the default icon, don’t you
agree?

Weather Monitor Distribution
Package
We’re now ready to send our Weather Monitor program out into the world.
But, first we need to build a distribution package. We will use the Visual
Basic Setup Wizard discussed in Chapter 8. You may like to review this
material before proceeding.

1. Add a Setup Wizard project to the Weather Monitor solution. The
Access version of the project developed here is Weather Monitor in
the VCSDB\Code\Class 10 folder. Follow the wizard steps. It is
important to remember to add the weather.chm file in Step 4 where
you are asked what additional files to include

2. Create shortcuts and associated icons for installation in the User’s
Desktop and User’s Program Menu.

3. Try installing the application on your computer. Better yet, take the files
(use a CD-ROM) to another Windows-based machine, preferably
without Visual Basic installed. Install the application using the
distribution package and test its operation. To run the newly installed
application, click Start on the Windows task bar. Choose All Apps and
click your application. It will begin executing like any Windows
program! If desired, try removing your application.

The Weather Monitor is now complete - a long, educational journey.

Suggested Improvements
Even though the Weather Monitor Project is complete (the final version
is saved in Example 10-3 folder in VCSDB\Code\Class 10 folder), there
are some possible changes we could make. We’ll give you some of our
ideas. I’m sure you have some ideas too.

We make sure the user can only type numbers, decimal points, or the
negative sign in the temperature and precipitation fields. But, there is no
way to prevent the user from typing multiple decimal points and negative
signs. Can you think of a way to modify the entry validation code to limit
each field to (at most) one decimal point and one negative sign?

In its current implementation, we plot temperature and precipitation data
from a single file. It would be interesting to be able to plot another file on
the same grids. This would allow a user to compare one year with another
or compare weather files from two different locations. You would need
additional data objects for each file you wanted to add. Editing of multiple
files could also get tricky.

The plotted data is static – no user interaction is possible. It would be nice
to have the ability to ‘zoom’ in on certain plot areas. See if this is possible
with the panel we use.

Add more labels to plots and printed reports. For example, the printed
plots do not indicate any time period. Add this information by indicating
which radio button is clicked.

Add other fields to the database and modify the application. Perhaps add
barometric pressure. Performing such a modification will point out the
importance of thinking through your database design correctly the first
time. Adding a field, though increasing the usability of your application,
also causes many headaches in later modifications.

Add the ability to automatically convert external data files to a format

usable by the application. For example, the US Weather Service makes
temperature and precipitation files available for download on the Internet.
Can you adapt this application to read those files and load the data into an
Access database file? We’ll look at one way to do this in Chapter 11.

Example 10-3

Using SQL Server Databases
Differences in the SQL Server version of the example:

1. Change these properties:

OpenFileDialog1:
Name dlgOpen
DefaultExt mdf
FileName [blank]
Filter SQL Server Files (*.mdf)|*.mdf

SaveFileDialog1:
Name dlgSave
OverwritePrompt True
DefaultExt mdf
Filter SQL Server Files (*.mdf)|*.mdf

2. In the VCSDB/Databases folder is an empty weather database named
SQLWeatherDBBlank.mdf. This was created using Server Explorer.
It has a single table (Weather) with the following fields (Columns):

Copy this file to your application’s Bin\Debug folder (you may have to
create it). When a user selects New File, we will copy this database file to
the name selected by the user with the save dialog control.

3. Use this code for the initial btnNew_Click event method (later
modifications are the same as the Access version):

private void btnNew_Click(object sender, EventArgs e)
{

try
{

// get filename
if (dlgSave.ShowDialog() == DialogResult.OK)
{

// create table
FileCopy(Application.StartupPath +

"\\SQLWeatherDBBlank.mdf", dlgSave.FileName)
}

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Creating Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

This code creates an empty weather database using the selected name,
dlgSave.FileName. Note this code assumes the empty file
(SQLWeatherDBBlank.mdf) is in the application startup directory.

4. Use this using statement:

using System.Data.SqlClient;

5. Change all instances of OleDbConnection to SqlConnection
Change all instances of OleDbCommand to SqlCommand
Change all instances of OleDbDataAdapter to SqlDataAdapter
Change all instances of OleDbCommandBuilder to
SqlCommandBuilder

6. In OpenConnection method, use this connection object:

WeatherConnection = new SqlConnection("Data
Source=.\\SQLEXPRESS; AttachDbFilename=" + fName + ";
Integrated Security=True; Connect Timeout=30; User
Instance=True"); 7. Sample SQL Server databases
(SQLSea02DB.mdf and SQLSea03DB.mdf) are in the
VCSDB\Code\Class 10\Example 10-3 folder.

If you build a distribution package, be sure to include
SQLWeatherDBBlank.mdf (the empty database).

Summary
In this chapter, we developed three different database applications. Each
application addressed some typical concerns you may encounter in
developing your own applications.

At this point in your studies, you should have a good understanding of the
Visual C# data objects. You are fluent in the development of well-
designed Visual C# database interfaces. And, you know how to create
databases and database reports. In the final course chapter, we address a
few final topics that can serve as springboards into making you an
advanced database programmer.

11
Other Database Topics

Review and Preview
You have essentially completed the Visual C# and Databases course. At
this point, you have a good intermediate understanding of using Visual C#
with Access databases. But, even after 700 pages of notes, there is still
much to learn.

In this last chapter, we look at several unrelated topics. This information is
provided to help you progress in your skills as a Visual C# database
programmer. We discuss exporting and importing database data, working
with other database types, multi-user considerations, and web applications.
The examples in this chapter only use Access databases. If you are using
SQL Server databases, you should now have the skills to modify the
examples to work with your databases.

Exporting Database Data
A common task in any application, and not just database applications, is to
have the ability to move information from one application to another. In
this section, we discuss exporting data from a database. And, in the next,
we will cover the related importing problem. Data can be transferred in a
variety of formats. Here, we only discuss how to transfer data via
sequential disk files. An increasingly popular format is XML files for
Internet use – this is something you might like to investigate if you will be
using your applications on the Internet.

A sequential file is a line-by-line list of data. You can view a sequential
file with any text editor. We will use a particular type of a sequential file –
a comma-delimited file. This file has a Windows extension of csv
(comma separated variables) and is the most common format for exporting
and importing data between applications. When working with a database,
we simply go through our data table and, for each record, write the desired
field values on a single line of the file, separating them by commas.

The method followed to export data from a database to a sequential file is:

1. Open the database and establish the database table using the ADO
.NET data objects.

2. Open the desired output sequential file (use a csv extension with its
name).

3. For each record in the data table, write the desired fields (separated
by commas) to the output file.

4. Close and save the sequential file.

We know how to establish the data table. Let’s look at the other steps.

The methods used for exporting and importing data are in the System.IO
namespace. Hence, we add this line to the top of our code window:

using System.IO;

Opening a Sequential File for Output
The Visual C# syntax to open a sequential file for output is:

StreamWriter outputFile;
outputFile = new StreamWriter(myFile);

where myFile is the name (a string) of the file to open and outputFile is
the returned StreamWriter object used to write information to disk. Make
sure myFile has an extension of csv. Be aware if the file being opened
already exists, the first thing the Windows operating system does is erase
the existing file! So, put in any protections you might want to avoid wiping
out a needed file. Once the file is opened, it is ready for writing data to it.

If the data export feature is to be an integral part of your database
application, an open file dialog box should be used to obtain the path to the
sequential file. Use a DefaultExt of csv and check for overwrite
permissions. If you are using files for just a quick export job, we suggest
putting the sequential file in your application directory. Recall the
Application.StartupPath property provides this path. As an example, to
open test.csv in our application directory as outputFile, we would use:

outputFile = new StreamWriter(Application.StartupPath +
"\\test.csv");

Writing Data to a Sequential File
Once opened, writing data to the file is a simple task. Information
(variables or text) is written to a sequential file in an appended fashion.
Separate Visual C# statements are required for each appending.

For a file opened as outputFile, the syntax is to save a variable named
MyVariable is:

outputFile.Write(myVariable);

This statement will append the specified variable (a field from our
database) to the current line in the sequential file. With Write for output,
everything will be written in one very long line. For csv files, we append a
comma to the line after each piece of information.

Example for three fields field1, field2, field3:

StreamWriter outputFile;
outputFile = new StreamWriter("c:\\junk\\TestOut.csv");
outputFile.Write(field1);
outputFile.Write(",");
outputFile.Write(field2);
outputFile.Write(",");
outputFile.Write(field3);

After this code runs, the file c:\junk\TestOut.txt will have a single line
with all three fields separated by commas.

To move to a new line once a line is complete, use:

outputFile.Write(outputFile.NewLine);

You should know that we are not restricted to only exporting data in

comma-delimited format. With Visual C#, we can write data to files in any
format we want. In fact, there are instances where applications may require
a file that is not comma-delimited. We won’t do that here, however.

Saving a Sequential File
When done writing to the file, it is closed using the Close method. For our
example, the syntax is:

outputFile.Close();

Once a file is closed, it is saved on the disk under the path and filename
used to open the file.

Example 11-1

Exporting Database Data
In this example, we will export the customer data from the
KWSalesDB.accdb database studied in Chapters 9 and 10 to a comma-
delimited file. We will then load the resulting csv file into Microsoft Excel
for viewing. This is typical of export tasks. Recall the customers table has
seven fields: CustomerID, FirstName, LastName, Address, City, State
and Zip.

1. Start a new application. Place a button on the form. Set these properties:

Form1:
Name frmExport
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Export Data

button1:
Name btnExport
Text Export

My little form looks like this:

2. Copy KWSalesDB.accdb from the VCSDB\Code\Class 10\Example
10-1 folder to your working directory. This copy has some customers to

look at.

3. Add these lines at the top of the code window:

using System.Data.OleDb;
using System.IO;

4. Form level declarations to create data objects:

OleDbConnection KWSalesConnection;
OleDbCommand customersCommand;
OleDbDataAdapter customersAdapter;
DataTable customersTable;

5. Add this code to the frmExport_Load event method (creates data
objects assuming the KWSalesDB.accdb database is in your working
directory):

private void frmExport_Load(object sender, EventArgs e)
{

// connect to database
KWSalesConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = c:\\VCSDB\\Working\\KWSalesDB.accdb");

KWSalesConnection.Open();
// establish command object
customersCommand = new OleDbCommand("Select * from

Customers", KWSalesConnection);
// establish data adapter/data table
customersAdapter = new OleDbDataAdapter();
customersAdapter.SelectCommand = customersCommand;
customersTable = new DataTable();
customersAdapter.Fill(customersTable);

}

6. Add this code to the frmExport_FormClosing event method to dispose

of objects:

private void frmExport_FormClosing(object sender,
FormClosingEventArgs e)
{

// close the connection
KWSalesConnection.Close();
// dispose of the objects
KWSalesConnection.Dispose();
customersCommand.Dispose();
customersAdapter.Dispose();
customersTable.Dispose();

}

7. Place this code in the btnExport_Click event method:

private void btnExport_Click(object sender, EventArgs e)
{

StreamWriter outputFile;
outputFile = new StreamWriter(Application.StartupPath +
"\\customer.csv");
// write headers
for (int n = 0; n < customersTable.Columns.Count; n++)
{

outputFile.Write(customersTable.Columns[n]);
if (n < customersTable.Columns.Count - 1)

outputFile.Write(",");
}
outputFile.Write(outputFile.NewLine);
// write all fields
foreach (DataRow myRow in customersTable.Rows)
{

for (int n = 0; n < customersTable.Columns.Count; n++)
{

if (myRow[n] != null)
outputFile.Write(myRow[n].ToString());

if (n < customersTable.Columns.Count - 1)
outputFile.Write(",");
}
outputFile.Write(outputFile.NewLine);

}
outputFile.Close();

}

In this code, we first open the sequential file customer.csv. We write the
column headers to the file. We then cycle through each row in the data
table. For each record, we write the seven fields to the file. When done the
file is closed (and saved).

8. Save (saved in Example 11-1 folder in the VCSDB\Code\Class 11
folder) and run the application. Click Export. Stop the application. Go
to Windows Explorer and you should see customer.csv saved in your
application directory (the projects’s Bin\Debug folder). Double-click
the file. Excel should fire up and you’ll see:

The data has been moved out of the database into Excel. We could now
use this (in conjunction with Microsoft Word) to generate mailing labels.
The csv file can also be opened using Notepad. Do this and you’ll see the
comma-delimited nature of the file:

Importing Database Data
Another common task is to take data from some other source and put it in
a database. This is the data import problem. We assume that the data is
available in a sequential file of some kind. It is not necessary that the file
be comma-delimited. As long as we know what the file looks like, we can
write the Visual C# code to read it. Here, however, we will assume a
comma-delimited file.

The method followed to import data from a sequential file to a database is:

1. Establish the empty database data table using Access or ADOX code.
2. Open the desired input sequential file (will have a csv extension).
3. For each desired record in the data table, read the needed fields

(separated by commas) from the input file and commit them to the
database.

4. Close the sequential file.

Again, we know how (or should know how) to do the required database
tasks. Let’s look at the other steps.

Opening a Sequential File for Input
The Visual C# syntax to open a sequential file for input is:

StreamReader inputFile;
inputFile = new StreamReader(myFile);

where myFile is a complete path (drive, directory, file name) to the file
being opened and inputFile is the returned StreamReader object used to
read information from disk. . myFile may or may not have an extension of
csv – it depends on how the file was created.

If the data import feature is to be an integral part of your database
application, an open file dialog box should be used to obtain the path to the
sequential file. If you are using files for just a quick export job, we suggest
putting the sequential file in your application directory. Recall the
Application.StartupPath property provides this path. To open test.csv in
our application path, write:

inputFile = new StreamReader(Application.StartupPath +
"\\test.csv")

Reading Data from a Sequential File
Once opened, data is read from the sequential file one line at a time. Each
line of input requires a separate statement. A line of data (myLine) is read
from the file using:

myLine = inputFile.readLine();

For a csv file, myLine is a list of variables, separated by commas. To
determine the individual variables, this line is ‘parsed’ using commas as
delimiters.

Once the variables are parsed (read), they can be committed to the
database by simply equating the database fields to their corresponding
value from the sequential file. Sometimes, we may have to generate the
field based on some function of the file variables. This is easy to do in
code. For example, if the variables include first and last name, but the
database wants a full name, we could concatenate the name variables
before committing them to the database.

Once we have the line (myLine) to parse, what we do with it depends on
what we know. The basic idea is to determine the bounding character
positions of each variable within the line. Character location is zero-based,
hence the first character in a string is character 0. If the first position is fp
and the last position is lp, the substring representation of this variable
(variableString) can be found using the Visual C# Substring method:

variableString = myLine.Substring(fp, lp – fp + 1);

This says return the Substring in myLine that starts at position fp and is
lp – fp + 1 characters long. Once we have extracted variableString, we
convert it to the proper data type.

So, how do you determine the starting and ending positions for a variable
in a line? For a csv file, you search for commas using then IndexOf

method. For example,

myLine.IndexOf(",")

returns the position of the first comma encountered in myLine.

As variables are extracted from the input data line, we shorten the line
(excluding the extracted substring) before looking for the next variable. To
do this, we use again use the Substring method. If lp was the last position
of the substring removed from left side of myLine, we shorten this line
using:

myLine = myLine.Substring(lp + 1, myLine.Length – lp - 1).Trim();

This removes the first lp characters from the left side of myLine. The
Trim method removes any leading and/or trailing spaces and myLine is
replaced by the shortened line. Notice by shortening the string in this
manner, the first position for finding each extracted substring will always
be 0 (fp = 0). Parsing may seem confusing, but it’s really not. Look at the
example.

Closing a Sequential File
When all values have been read from the sequential file, it is closed using
the Close method. For our example, use:

inputFile.Close();

Example 11-2

Importing Database Data
Look back at Example 10-1, our Weather Monitor example. Note we
included two weather databases with this example. These files,
Sea02DB.accdb and Sea03DB.accdb, include weather information
recorded in Seattle, Washington, in 2002 and 2003, respectively. We did
not type this information into the database table. It was imported from a
file supplied by the National Weather Service. In this example, we show
how we took the Weather Service sequential file and loaded it into an
Access database.

1. First, let’s look at the sequential file. Open Sea02.txt, included in the
VCSDB\Code\Class 11\Example 11-2 folder. Using Notepad, this
file appears as:

Note the file has a single line of header information (we’ll skip this line).
Then, each line after this has the high temperature, the low temperature,
precipitation amount, and any comment that might be added. These four
values will be loaded into the corresponding database fields. Recall the
database has five fields are: WeatherDate, HighTemp, LowTemp,

Precip, and Comment. Obviously, we’ll have to generate the
WeatherDate field in code (not a tough job, given we know the year is
2002).

2. Start a new application. Place a button on the form. Set these properties:

Form1:
Name frmImport
FormBorderStyle FixedSingle
StartPosition CenterScreen
Text Import Data

button1:
Name btnImport
Text Import

My little form looks like this:

3. Add a reference to ADOX library to your project. Add these lines at the
top of the code window:

using ADOX;
using System.Data.OleDb;
using System.IO;

4. Add these form level declarations for the data objects:

OleDbConnection weatherConnection;
OleDbCommand weatherCommand;
OleDbDataAdapter weatherAdapter;
DataTable weatherTable;

5. Place this code in the btnImport_Click event method:

private void btnImport_Click(object sender, EventArgs e)
{

Catalog weatherDatabase = new Catalog();
Table databaseTable;
string databaseFile = Application.StartupPath +
"\\Sea02DB.accdb";
string dataFile = Application.StartupPath + "\\Sea02.txt";
string dataYear = "2002";
// create empty database
try
{

weatherDatabase.Create("Provider=Microsoft.ACE.OLEDB.12.0;
Data Source = " + databaseFile);

// create table
databaseTable = new Table();
databaseTable.Name = "Weather";
// add fields
databaseTable.Columns.Append("WeatherDate",
DataTypeEnum.adDate, 20);
databaseTable.Columns.Append("HighTemp",
DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("LowTemp",
DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("Precip",
DataTypeEnum.adSingle, 10);
databaseTable.Columns.Append("Comment",
DataTypeEnum.adWChar, 50);
databaseTable.Columns["HighTemp"].Attributes =
ColumnAttributesEnum.adColNullable;
databaseTable.Columns["LowTemp"].Attributes =
ColumnAttributesEnum.adColNullable;
databaseTable.Columns["Precip"].Attributes =

ColumnAttributesEnum.adColNullable;
databaseTable.Columns["Comment"].Attributes =
ColumnAttributesEnum.adColNullable;
// primary key
databaseTable.Keys.Append("PK_Weather",
KeyTypeEnum.adKeyPrimary, "WeatherDate", null, null);
databaseTable.Indexes.Append("WeatherDate",
"WeatherDate");
weatherDatabase.Tables.Append(databaseTable);

}
catch (Exception ex)
{

MessageBox.Show(ex.Message, "Error Creating Database",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
finally
{

weatherDatabase = null;
}
// connect to database
weatherConnection = new

OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0; Data
Source = " + databaseFile);

weatherConnection.Open();
weatherCommand = new OleDbCommand("SELECT * FROM
Weather

ORDER BY WeatherDate", weatherConnection);
weatherAdapter = new OleDbDataAdapter();
weatherAdapter.SelectCommand = weatherCommand;
weatherTable = new DataTable();
weatherAdapter.Fill(weatherTable);
// fill dates and other fields
StreamReader inputFile = new StreamReader(dataFile);
// skip first line

inputFile.ReadLine();
DateTime tableDate = new

DateTime(Convert.ToInt32(dataYear), 1, 1);
DateTime nextYear = new

DateTime(Convert.ToInt32(dataYear) + 1, 1, 1);
int nDays = (nextYear - tableDate).Days;
DataRow newRow;
string myLine, myVariable;
int cl;
for (int n = 1; n <= nDays; n++)
{

newRow = weatherTable.NewRow();
newRow["WeatherDate"] = tableDate;
// read data line and parse out four fields
myLine = inputFile.ReadLine();
// high temperature
cl = myLine.IndexOf(",");
myVariable = myLine.Substring(0, cl);
newRow["HighTemp"] = Convert.ToSingle(myVariable);
myLine = myLine.Substring(cl + 1, myLine.Length - cl -
1).Trim();
// low temperature
cl = myLine.IndexOf(",");
myVariable = myLine.Substring(0, cl);
newRow["LowTemp"] = Convert.ToSingle(myVariable);
myLine = myLine.Substring(cl + 1, myLine.Length - cl -
1).Trim();
// precip
cl = myLine.IndexOf(",");;
myVariable = myLine.Substring(0, cl);
if (!myVariable.Equals(""))

newRow["Precip"] = Convert.ToSingle(myVariable);
else

newRow["Precip"] = 0.0;
myLine = myLine.Substring(cl + 1, myLine.Length - cl -
1).Trim();
// comment
newRow["Comment"] = myLine;
weatherTable.Rows.Add(newRow);
tableDate += new TimeSpan(1, 0, 0, 0);

}
inputFile.Close();
// save database and dispose of objects
OleDbCommandBuilder weatherAdapterCommand = new

OleDbCommandBuilder(weatherAdapter);
weatherAdapter.Update(weatherTable);
weatherConnection.Close();
weatherConnection.Dispose();
weatherCommand.Dispose();
weatherAdapter.Dispose();
weatherTable.Dispose();
weatherAdapterCommand.Dispose();

}

Most of this code was borrowed from Example 10-3 (the Weather Monitor
project). We use ADOX to create the empty Sea02DB.accdb database and
create the fields. We then create the data objects needed to add rows to the
database.

Next, the data file (Sea02.txt) is opened and the date is initialized. Note
we skip the header line. Each data line in the file has four values. As each
line is read, a new record is added and the proper values (after parsing
using comma positions) are placed in the five database fields. Once done,
the sequential file is closed and the data table is saved to the database.

6. Save (saved in Example 11-2 folder in the VCSDB\Code\Class 11
folder) and run the application. Make sure Sea02.txt is in your project’s
Bin\Debug folder (you may have to create it first). If no errors occur,
the database file was successfully written and will be in your project’s

Bin\Debug folder (make sure Sea02.txt is also in this folder). Here’s
the Weather table from the newly created Sea02DB.accdb file opened
in Access:

Notice all the data is in the proper places. If you change the DatabaseFile,
DataFile and DataYear variables in the code, you can also create the
Sea03DB.accdb database.

Other Database Types
Every example we have built in this course has used the Microsoft Access
database format (OLE DB data model). Visual C# also supports other
database formats including: ODBC (Open Database Connectivity) and
Oracle.

Fortunately, since all databases use the same concept of records (rows) and
fields (columns), all the techniques discussed in this course for editing,
adding, and deleting records apply no matter what type of database you are
working with. The only change you need to make is to use the ADO .NET
data objects associated with your particular database type. The website:

http://msdn.microsoft.com/en-us/library/32c5dh3b(v=vs.71).aspx

provides current links to pages to explain connections to various database
types.

As you study other database types, you will see that the various data
objects are similar, but there are differences. We suggest you check other
references to see if particular properties, methods, or events are supported
by your particular database.

One other note: the OLE DB technology we’ve used in these notes can
also be used to connect to ODBC, SQL Server, and Oracle databases. You
just need a database specific connection string. This makes any application
built with OLE DB database-independent. If however, you want to use
database-specific data objects, we provide a brief overview.

http://msdn.microsoft.com/en-us/library/32c5dh3b(v=vs.71).aspx

ODBC Data Objects
ODBC is a technology that predates OLE DB (the technology used by
Access). As such, it is used by many older databases. ODBC data objects
are contained within the System.Data.Odbc namespace.

The data connection object is OdbcConnection.

The data adapter object is OdbcDataAdapter.

The command object is OdbcCommand.

Oracle Data Objects
Oracle is perhaps the most widely used large scale database management
tool. It is produced by the Oracle Corporation. The ADO .NET data
objects for Oracle databases provide the most efficient access. These
objects can be used with Oracle Version 8.1.7 and later. If you are using an
older version, use the ODBC data objects. Oracle data objects are
contained within the System.Data.OracleClient namespace.

The data connection object is OracleConnection.

The data adapter object is OracleDataAdapter.

The command object is OracleCommand.

Multi-User Considerations
Every example we’ve studied in this course has assumed a single user will
be accessing the database at any one time. This is appropriate for many
Visual C# applications. But, eventually, you will encounter an application
that is constructed for use in a networked environment. The database file
will be on a file server and shared by many users. This allows centralized
data collection and querying.

Supporting multiple users with simultaneous access to a single database
requires special consideration. Fortunately, Visual C# provides us with
several tools to handle multiple users. The ADO .NET database engine
works well in a multiple-user environment. To use a database in such
environment, you need to:

∘ Place the database file in a shared directory.
∘ Make sure the file server is configured so each user has read and

write access to the directory containing the database file.
∘ Configure all data sources in your application so it points to the

shared database file.

Multiple users can cause problems when trying to access the same data.
Typical problems include:

∘ Two users try to update the same record.
∘ One user updates a record while the other is viewing it, making the

visible data out of date.
∘ One user deletes a record while the other is using it.

The concept of locking is used to try to mitigate these, and other,
problems. And, lots of error trapping is required in multiple user
environments, but these are skills you have.

Database Web Applications
We all know the Internet has become part of everyday life. A great new
feature of Visual C# is the idea of web forms. With web forms, we can
build applications that run on the Internet – web applications. Web
applications differ from the Windows applications we have been building.
A user (client) makes a request of a server computer. The server generates
a web page (in HTML) and returns it to the client computer so it can be
viewed with browser software.

Web applications are built in Visual C# using something called ASP .NET
(Active Server Pages .NET). ASP .NET is an improved version of
previous technologies used to build web applications. In the past, to build a
dynamic web application, you needed to use a mishmash of programming
technologies. Web pages were generated with HTML (yes, the same
HTML we used to write help files) and programming was done with ASP
(Active Server Pages) and VCS Script (a Visual C# scripting language).

With ASP .NET, the process for building web applications is the same
process used to build Windows applications. To build a web application,
we start with a form, add web controls and write code for web control
events. There is a visual project component that shows the controls and a
code component with event methods and general methods and functions.

In these notes, we introduce the idea of web applications with databases.
You can use your new programming skills to delve into more advanced
references on ASP .NET and web applications. Here, we cover a few web
applications topics:

➢ Address the approaches used to build web applications using web
forms.

➢ Discuss the web form controls and how they differ from their
Windows counterparts.

➢ Demonstrate the process of building web applications with a simple
database example.

Starting a New Web Application
To start the process of building a web application, you select the File menu
option in Visual C#. Then, click New Web Site. This window appears:

Select ASP .NET Empty Web Site from the Templates list. In the drop-
down box to the left of the Browse button, either select or type the name
of a folder to hold your new web site. Make sure the selected Language is
Visual C#. Click OK to create the application.

Once created, right-click the web site name in the Solution Explorer
window and select Add, then Web Form. A blank web form appears (with
extension aspx).

At this point, we can start building our first web application by placing
controls on the web form and writing code for various events. A blank
form will appear in the design window:

(If the form does not appear, right click the project name, choose Add,
then Web Form). There are two views of the form: Design (the graphical
display) and Source (the HTML code behind the form).

Let’s look at the controls available and how to place them on the form.

Web Form Controls
When a web form is being edited, the controls available for placing on a
web form are found in the Visual C# toolbox. A view showing some of the
resulting controls is:

The names in this menu should be familiar. The controls are similar to the
Windows form controls we’ve used throughout this course. There are
differences, however. The major differences are in the names of some
properties (for example, the ID property is used in place of a Name
property) and web form controls usually have far fewer events than their
Windows counterparts. Let’s look at some of the controls – feel free to
study other controls for your particular needs.

Label Control:

The label control allows placement of formatted text information on a
form (Text property). Font is established with the Font property.

TextBox Control:

The text box controls allows placement of text information on a form
(Text property). This is probably the most commonly used web form
control. There is no KeyPress event for key trapping. Validation with web
controls can be done using validator controls.

Button Control:

The button control is nearly identical to the Windows counterpart. Code is
written in the Click event.

LinkButton Control:

The link button control is clicked to follow a web page hyperlink (set with
Text property). This is usually used to move to another web page. Code is
added to the Click event.

ImageButton Control:

This control works like a button control – the user clicks it and code in the
Click event is executed. The difference is the button displays an image
(ImageURL property) rather than text.

HyperLink Control:

The control works like the link button control except there is no Click
event. Clicking this control moves the user to the link in the Text property.

DropDownList Control:

Drop down list controls are very common in web applications. Users can
choose from a list of items (states, countries, product). The listed items are
established using an Items collection and code is usually written in the
SelectedIndexChanged event (like the Windows counterpart).

ListBox Control:

A list box control is like a drop down list with the list portion always
visible. Multiple selections can be made with a list box control.

GridView Control:

The grid view control is used to list a table of data (whether a data set from
a database or data generated in your web application).

CheckBox Control:

The check box control is used to provide a yes or no answer to a question.
The Checked property indicates its state. Code is usually added to the
CheckedChanged event.

CheckBoxList Control:

The check box list control contains a series of independent check box
controls. It is a useful control for quickly adding a number of check boxes

to a form. It can be used in place of a list box control for a small (less than
10) number of items. The individual controls are defined in an Items
collection (Text property specifies the caption, Selected specifies its
status).

RadioButton Control:

The radio button control is identical to the Windows radio button control.
It is used to select from a mutually exclusive group of options. The
Checked property indicates its state. Code is usually added to the
CheckedChanged event.

RadioButtonList Control:

The radio button list control provides an easy way to place a group of
dependent radio buttons in a web application. The individual controls are
defined in an Items collection (Text property specifies the caption,
Selected specifies its status).

Image Control:

Images are useful in web applications. They give your application a
polished look. The image control holds graphics. The image (set with
ImageURL property) is usually a gif or jpg file.

By default, web controls are placed on the form in flow mode. This means
each element is placed to the right of the previous element. This is
different than the technique used in building Windows forms. We want to
mimic the Windows forms behavior. To do this, choose the Tools menu
option in the development environment and choose Options.

Choose the Web Forms Designer and CSS Styling. Place check next to
“Change position to absolute for controls …”. Then click OK.

With this change, there are two ways to move a web control from the
toolbox to the web form:

1. Click the tool in the toolbox and hold the mouse button down. Drag
the selected tool over the form. When the mouse button is released,
the default size control will appear in the upper left corner of the
form. This is the classic “drag and drop” operation. For a button
control, we would see:

2. Double-click the tool in the toolbox and it is created with a default
size on the form. It will be in the upper left corner of the form. You
can then move it or resize it. Here is a button control placed on the
form using this method:

To move a control you have drawn, click the object in the form (a cross
with arrows will appear). Now, drag the control to the new location.
Release the mouse button.

To resize a control, click the control so that it is selected (active) and
sizing handles appear. Use these handles to resize the object.

To delete a control, select that control so it is active (sizing handles will
appear). Then, press <Delete> on the keyboard. Or, right-click the control.
A menu will appear. Choose the Delete option. You can change your mind
immediately after deleting a control by choosing the Undo option under

the Edit menu.

Building a Web Application
To build a web application, we follow the same three steps used in
building a Windows application:

1. Draw the user interface by placing controls on a web form
2. Assign properties to controls
3. Write code for control events (and perhaps write other methods)

We’ve seen the web controls and how to place them on the web form.
Let’s see how to write code. You’ll see the process is analogous to the
approach we use for Windows applications.

Code is placed in the Code Window. Typing code in the code window is
just like using any word processor. You can cut, copy, paste and delete text
(use the Edit menu or the toolbar). You access the code window using the
menu (View), toolbar, or by pressing <F7> (and there are still other ways
– try double clicking a control) while the form is active. Here is the Code
window for a ‘blank’ web application:

The header begins with partial class. Any web form scope level
declarations are placed after this line. There is a Page_Load event. This is
similar to the Windows form Load event where any needed initializations
are placed.

Like in Windows applications, the box on the top, right of the code
window is the method list, showing all methods in the code window.
Double-clicking the control of interest will access default event methods.
Or, events can be defined using the properties window. This is the same as
we saw for Windows applications. That’s the beauty of web forms – there
is little new to learn about building an application.

Once your controls are in place and code is written, you can run your web
application. Before running, it is a good idea to make sure your browser is
up and running. Click the Start button in the Visual C# toolbar and your
browser should display your application (the aspx file). You may see this
window once started:

Special steps need to be taken to use the debugger with web applications.
We will not take these steps. So, if this window appears, just select Run
without debugging and click OK. Once running in the browser, select the
View menu and choose View Source to see the actual HTML code used to
produce the displayed web page.

We conclude this brief examination of web applications with a simple
database example.

Example 11-3

Viewing Weather Data
We will build a simple web application that displays the Sea02DB.accdb
data in a grid view control. A copy of this database is saved in the
VCSDB\Code\Class 11\Example 11-3 folder. The entire example is built
without writing any code.

1. Start a new web application. Place a single label control on the form. Set
its Text property to Seattle 2002 Weather. It should look like this:

2. We will create a data source using the database file, then use a drag and
drop feature to create a data grid that will display the Weather table in
the database. Display the Server Explorer window (click the View
menu item, then select Server Explorer). Right-click the Data
Connections item and select Add Connection. This window should
appear:

Browse to Sea02DB.accdb and click OK.

3. The data connection (I’ve expanded it a bit) is now shown in the Server
Explorer window:

4. Drag and drop the Weather table from the Server Explorer window to
the web form. Two things will happen. A data source will be added, as
will a data grid. My web form looks like this (I’ve moved the grid
down):

5. Save your web application. (This application is saved in the Example
11-3 folder in the VCSDB\Code\Class 11 folder.) At this point, if
things all work well, you can click the Start button (remember to run
without debugging) and see your first web application appear in your
default browser:

We did this all with no code!

Obviously, this is a very brief introduction to web applications with
databases, but it should give you some idea of the power of such
applications.

Summary
The Visual C# and Databases course is complete. At this point, you have
significant programming skills for using Visual C# with desktop (single-
user) applications. Yet, we’ve only just begun to look at all the capabilities
of Visual C# in working with databases.

Good programmers never stop learning. Study the material in this course
until you are comfortable with it. Throughout this course, suggestions were
given for extending your knowledge base. Do it! Extend your knowledge
to multiple-user, networked environments. The new world out there is the
Internet. Study how to deploy database applications on the Internet. There
are lots of good advanced books available addressing these topics and
more. And, perhaps, some day we’ll have another course delving deeper
into the world of database programming with Visual C#.

Example 11-4

The Last Database Project
We end all of our courses with this same general project. Design a
database management application in Visual C# that everyone on the planet
wants to buy. Build a world-class interface. Thoroughly debug and test
your application. Create a distribution package. Find a distributor or
distribute it yourself through your newly created ‘dot-com’ company.
Become fabulously wealthy. Remember those who made it all possible by
rewarding them with jobs and stock options.

More Self-Study or Instructor-Led Computer
Programming Tutorials by Kidware Software

Small Basic For Kids is an illustrated introduction to computer programming that provides an
interactive, self-paced tutorial to the new Small Basic programming environment. The book consists
of 30 short lessons that explain how to create and run a Small Basic program. Elementary students
learn about program design and many elements of the Small Basic language. Numerous examples
are used to demonstrate every step in the building process. The tutorial also includes two complete
games (Hangman and Pizza Zapper) for students to build and try. Designed for kids ages 8+.

Programming Games with Microsoft Small Basic is a self-paced second semester “intermediate"
level programming tutorial consisting of 10 chapters explaining (in simple, easy-to-follow terms)
how to write video games in Microsoft Small Basic. The games built are non-violent, family-
friendly, and teach logical thinking skills. Students will learn how to program the following Small
Basic video games: Safecracker, Tic Tac Toe, Match Game, Pizza Delivery, Moon Landing, and
Leap Frog. This intermediate level self-paced tutorial can be used at home or school.

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

The Developer’s Reference Guide to Microsoft Small Basic While developing all the different
Microsoft Small Basic tutorials we found it necessary to write The Developer's Reference Guide to
Microsoft Small Basic. The Developer's Reference Guide to Microsoft Small Basic is over 500
pages long and includes over 100 Small Basic programming examples for you to learn from and
include in your own Microsoft Small Basic programs. It is a detailed reference guide for new
developers.

Basic Computer Games - Small Basic Edition is a re-make of the classic BASIC COMPUTER
GAMES book originally edited by David H. Ahl. It contains 100 of the original text based BASIC
games that inspired a whole generation of programmers. Now these classic BASIC games have
been re-written in Microsoft Small Basic for a new generation to enjoy! The new Small Basic
games look and act like the original text based games. The book includes all the original spaghetti
code and GOTO commands!

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

The Beginning Microsoft Small Basic Programming Tutorial is a self-study first semester
"beginner" programming tutorial consisting of 11 chapters explaining (in simple, easy-to-follow
terms) how to write Microsoft Small Basic programs. Numerous examples are used to demonstrate
every step in the building process. The last chapter of this tutorial shows you how four different
Small Basic games could port to Visual Basic, Visual C# and Java. This beginning level self-paced
tutorial can be used at home or at school. The tutorial is simple enough for kids ages 10+ yet
engaging enough for adults.

Programming Home Projects with Microsoft Small Basic is a self-paced programming tutorial
explains (in simple, easy-to-follow terms) how to build Small Basic Windows applications.
Students learn about program design, Small Basic objects, many elements of the Small Basic
language, and how to debug and distribute finished programs. Sequential file input and output is
also introduced. The projects built include a Dual-Mode Stopwatch, Flash Card Math Quiz,
Multiple Choice Exam, Blackjack Card Game, Weight Monitor, Home Inventory Manager and a
Snowball Toss Game.

David Ahl's Small Basic Computer Adventures is a Microsoft Small Basic re-make of the classic
Basic Computer Games programming book originally written by David H. Ahl. This new book
includes the following classic adventure simulations; Marco Polo, Westward Ho!, The Longest
Automobile Race, The Orient Express, Amelia Earhart: Around the World Flight, Tour de France,
Subway Scavenger, Hong Kong Hustle, and Voyage to Neptune. Learn how to program these
classic computer simulations in Microsoft Small Basic.

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

Java™ For Kids is a beginning programming tutorial consisting of 10 chapters explaining (in
simple, easy-to-follow terms) how to build a Java application. Students learn about project design,
object-oriented programming, console applications, graphics applications and many elements of the
Java language. Numerous examples are used to demonstrate every step in the building process. The
projects include a number guessing game, a card game, an allowance calculator, a state capitals
game, Tic-Tac-Toe, a simple drawing program, and even a basic video game. Designed for kids
ages 12 and up.

Learn Java™ GUI Applications is a 9 lesson Tutorial covering object-oriented programming
concepts, using an integrated development environment to create and test Java projects, building
and distributing GUI applications, understanding and using the Swing control library, exception
handling, sequential file access, graphics, multimedia, advanced topics such as printing, and help
system authoring. Our Beginning Java or Java For Kids tutorial is a pre-requisite for this tutorial.

http://www.computerscienceforkids.com/java
http://www.computerscienceforkids.com/java
http://www.computerscienceforkids.com/java

Java™ Homework Projects is a Java GUI Swing tutorial covering object-oriented programming
concepts. It explains (in simple, easy-to-follow terms) how to build Java GUI project to use around
the home. Students learn about project design, the Java Swing controls, many elements of the Java
language, and how to distribute finished projects. The projects built include a Dual-Mode
Stopwatch, Flash Card Math Quiz, Multiple Choice Exam, Blackjack Card Game, Weight Monitor,
Home Inventory Manager and a Snowball Toss Game. Our Learn Java GUI Applications tutorial
is a pre-requisite for this tutorial.

Beginning Java™ is a semester long "beginning" programming tutorial consisting of 10 chapters
explaining (in simple, easy-to-follow terms) how to build a Java application. The tutorial includes
several detailed computer projects for students to build and try. These projects include a number
guessing game, card game, allowance calculator, drawing program, state capitals game, and a
couple of video games like Pong. We also include several college prep bonus projects including a
loan calculator, portfolio manager, and checkbook balancer. Designed for students age 15 and up.

Programming Games with Java™ is a semester long "intermediate" programming tutorial
consisting of 10 chapters explaining (in simple, easy-to-follow terms) how to build a Visual C#
Video Games. The games built are non-violent, family-friendly and teach logical thinking skills.
Students will learn how to program the following Visual C# video games: Safecracker, Tic Tac
Toe, Match Game, Pizza Delivery, Moon Landing, and Leap Frog. This intermediate level self-
paced tutorial can be used at home or school. The tutorial is simple enough for kids yet engaging
enough for beginning adults. Our Learn Java GUI Applications tutorial is a required pre-requisite
for this tutorial.

http://www.computerscienceforkids.com/java
http://www.computerscienceforkids.com/java

Visual Basic® For Kids is a beginning programming tutorial consisting of 10 chapters explaining
(in simple, easy-to-follow terms) how to build a Visual Basic Windows application. Students learn
about project design, the Visual Basic toolbox, and many elements of the BASIC language. The
tutorial also includes several detailed computer projects for students to build and try. These projects
include a number guessing game, a card game, an allowance calculator, a drawing program, a state
capitals game, Tic-Tac-Toe and even a simple video game. Designed for kids ages 12 and up.

Programming Games with Visual Basic® is a semester long "intermediate" programming tutorial
consisting of 10 chapters explaining (in simple, easy-to-follow terms) how to build Visual Basic
Video Games. The games built are non-violent, family-friendly, and teach logical thinking skills.
Students will learn how to program the following Visual Basic video games: Safecracker, Tic Tac
Toe, Match Game, Pizza Delivery, Moon Landing, and Leap Frog. This intermediate level self-
paced tutorial can be used at home or school. The tutorial is simple enough for kids yet engaging
enough for beginning adults.

http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-basic

LEARN VISUAL BASIC is a comprehensive college level programming tutorial covering object-
oriented programming, the Visual Basic integrated development environment, building and
distributing Windows applications using the Windows Installer, exception handling, sequential file
access, graphics, multimedia, advanced topics such as web access, printing, and HTML help system
authoring. The tutorial also introduces database applications (using ADO .NET) and web
applications (using ASP.NET).

Beginning Visual Basic® is a semester long self-paced "beginner" programming tutorial consisting
of 10 chapters explaining (in simple, easy-to-follow terms) how to build a Visual Basic Windows
application. The tutorial includes several detailed computer projects for students to build and try.
These projects include a number guessing game, card game, allowance calculator, drawing
program, state capitals game, and a couple of video games like Pong. We also include several
college prep bonus projects including a loan calculator, portfolio manager, and checkbook balancer.
Designed for students age 15 and up.

Visual Basic® Homework Projects is a semester long self-paced programming tutorial explains
(in simple, easy-to-follow terms) how to build a Visual Basic Windows project. Students learn
about project design, the Visual Basic toolbox, many elements of the Visual Basic language, and
how to debug and distribute finished projects. The projects built include a Dual-Mode Stopwatch,
Flash Card Math Quiz, Multiple Choice Exam, Blackjack Card Game, Weight Monitor, Home
Inventory Manager and a Snowball Toss Game.

http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-basic

VISUAL BASIC AND DATABASES is a tutorial that provides a detailed introduction to using
Visual Basic for accessing and maintaining databases for desktop applications. Topics covered
include: database structure, database design, Visual Basic project building, ADO .NET data objects
(connection, data adapter, command, data table), data bound controls, proper interface design,
structured query language (SQL), creating databases using Access, SQL Server and ADOX, and
database reports. Actual projects developed include a book tracking system, a sales invoicing
program, a home inventory system and a daily weather monitor.

Visual C#® For Kids is a beginning programming tutorial consisting of 10 chapters explaining (in
simple, easy-to-follow terms) how to build a Visual C# Windows application. Students learn about
project design, the Visual C# toolbox, and many elements of the C# language. Numerous examples
are used to demonstrate every step in the building process. The projects include a number guessing
game, a card game, an allowance calculator, a drawing program, a state capitals game, Tic-Tac-Toe
and even a simple video game. Designed for kids ages 12+.

http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-c
http://www.computerscienceforkids.com/visual-c

Programming Games with Visual C#® is a semester long "intermediate" programming tutorial
consisting of 10 chapters explaining (in simple, easy-to-follow terms) how to build a Visual C#
Video Games. The games built are non-violent, family-friendly and teach logical thinking skills.
Students will learn how to program the following Visual C# video games: Safecracker, Tic Tac
Toe, Match Game, Pizza Delivery, Moon Landing, and Leap Frog. This intermediate level self-
paced tutorial can be used at home or school. The tutorial is simple enough for kids yet engaging
enough for beginning adults

LEARN VISUAL C# is a comprehensive college level computer programming tutorial covering
object-oriented programming, the Visual C# integrated development environment and toolbox,
building and distributing Windows applications (using the Windows Installer), exception handling,
sequential file input and output, graphics, multimedia effects (animation and sounds), advanced
topics such as web access, printing, and HTML help system authoring. The tutorial also introduces
database applications (using ADO .NET) and web applications (using ASP.NET).

Beginning Visual C#® is a semester long “beginning" programming tutorial consisting of 10
chapters explaining (in simple, easy-to-follow terms) how to build a C# Windows application. The
tutorial includes several detailed computer projects for students to build and try. These projects
include a number guessing game, card game, allowance calculator, drawing program, state capitals
game, and a couple of video games like Pong. We also include several college prep bonus projects
including a loan calculator, portfolio manager, and checkbook balancer. Designed for students ages
15+.

http://www.computerscienceforkids.com/visual-c
http://www.computerscienceforkids.com/visual-c

Visual C#® Homework Projects is a semester long self-paced programming tutorial explains (in
simple, easy-to-follow terms) how to build a Visual C# Windows project. Students learn about
project design, the Visual C# toolbox, many elements of the Visual C# language, and how to debug
and distribute finished projects. The projects built include a Dual-Mode Stopwatch, Flash Card
Math Quiz, Multiple Choice Exam, Blackjack Card Game, Weight Monitor, Home Inventory
Manager and a Snowball Toss Game.

VISUAL C# AND DATABASES is a tutorial that provides a detailed introduction to using Visual
C# for accessing and maintaining databases for desktop applications. Topics covered include:
database structure, database design, Visual C# project building, ADO .NET data objects
(connection, data adapter, command, data table), data bound controls, proper interface design,
structured query language (SQL), creating databases using Access, SQL Server and ADOX, and
database reports. Actual projects developed include a book tracking system, a sales invoicing
program, a home inventory system and a daily weather monitor.

http://www.computerscienceforkids.com/visual-c
http://www.computerscienceforkids.com/visual-c

	Course Description
	Course Prerequisites
	How to take the Course
	Software Requirements
	Hardware Requirements
	Installing and Using the Downloadable Solution Files
	Installing Visual C# & Databases
	Foreword by David B. Taylor, Former College Professor & Dept Chair
	1. Introducing Visual C# and Databases
	Preview
	Course Objectives
	Course Requirements
	What is a Database?
	Where Does Visual C# Fit In?
	Building a Visual C# Application
	Structure of a Visual C# Application
	Steps in Developing Application
	Drawing the User Interface and Setting Properties
	Setting Properties of Controls at Design Time
	Setting Properties at Run-Time
	How Names are Used in Control Events
	Writing Code
	Review of Variables
	Visual C# Data Types
	Variable Declaration
	Example 1-1. Mailing List Application
	Summary
	2. Introduction to Databases
	Review and Preview
	Database Structure and Terminology
	Relational Databases
	Using SQL Server Databases
	Sample Relational Database
	Sample Database Structure
	Virtual Database Tables
	Creating a Database
	Summary
	3. Database Connection
	Review and Preview
	Data Object Preview
	Connection Object
	Connection Object – Access Database
	Access Databases and 64 Bit Operating Systems
	Connection Object – SQL Server Database
	Example 3-1. Accessing the Books Database
	Command Object
	Command Object – Access Database
	Command Object – SQL Server Database
	Example 3-1 (Command Object). Accessing the Books Database
	DataAdapter Object
	DataAdapter Object – Access Database
	DataAdapter Object – SQL Server Database
	DataSet Object
	DataTable Object
	DataRow Object
	Example 3-1 (Data Table). Accessing the Books Database
	Data Bound Controls
	Example 3-1 (Data Binding). Accessing the Books Database
	CurrencyManager Object
	Example 3-1 (Final Version). Accessing the Books Database
	Data Wizards
	Example 3-2 (Access Database). Books Database with Wizards
	Example 3-2 (SQL Server Database). Books Database with Wizards
	Using SQL Server Databases in Examples
	Summary
	Example 3-3. Northwinds Trader Database
	Example 3-3. Using SQL Server Databases
	4. Database Queries with SQL
	Review and Preview
	SQL Background
	Basics of SQL
	Where Does SQL Fit In Visual C#?
	Example 4-1. SQL Tester
	Example 4-1. Using SQL Server Databases
	SELECT/FROM SQL Statement
	ORDER BY Clause
	WHERE Clause
	Single Table WHERE Clause
	Multiple Table WHERE Clause
	INNER JOIN Clause
	OUTER JOIN Clause
	Functions with SQL (Access Databases)
	Functions with SQL (SQL Server Databases)
	SQL Aggregate Functions
	SQL Construction Tools
	SQL Statements with Access
	SQL Statements with the Data Wizard
	Building SQL Commands in Code
	Example 4-2. Searching the Books Database
	Example 4-2. Using SQL Server Databases
	Summary
	Example 4-3. Northwind Traders Database
	Example 4-3. Using SQL Server Databases
	5. Visual C# Interface Design
	Review and Preview
	Interface Design Philosophy
	Example 5-1. Mailing List Revisited
	Visual C# Standard Controls
	Form Control
	Button Control
	Label Control
	TextBox Control
	CheckBox Control
	RadioButton Control
	GroupBox Control
	Panel Control
	PictureBox Control
	Example 5-2. Authors Table Input Form
	Example 5-2. Using SQL Server Databases
	MessageBox Object
	Example 5-3. Authors Table Input Form (Message Box)
	Example 5-3. Using SQL Server Databases
	Application State
	Example 5-4. Authors Table Input Form (Application State)
	Example 5-4. Using SQL Server Databases
	Entry Validation
	Key Trapping
	Example 5-5. Authors Table Input Form (Entry Validation)
	Example 5-5. Using SQL Server Databases
	Input Validation
	Example 5-6. Authors Table Input Form (Input Validation)
	Example 5-6. Using SQL Server Databases
	Error Trapping and Handling
	Example 5-7. Authors Table Input Form (Error Trapping)
	Example 5-7. Using SQL Server Databases
	On-Line Help Systems
	Creating a Help File
	Starting the HTML Help Workshop
	Creating Topic Files
	Creating Table of Contents File
	Compiling the Help File
	HelpProvider Control
	Example 5-8. Authors Table Input Form (On-Line Help)
	Example 5-8. Using SQL Server Databases
	Application Testing
	Other Controls
	MaskedTextBox Control
	NumericUpDown Control
	TabControl Control
	Toolstrip (Toolbar) Control
	ListBox Control
	ComboBox Control
	DataGridVIew Control
	MonthCalendar Control
	DateTimePicker Control
	OpenFileDialog Control
	SaveFileDialog Control
	Summary
	Example 5-9. Publisher Table Input Form
	Build Interface
	Add Message Box(es)
	Code Application State
	Perform Entry Validation
	Perform Input Validation
	Add Error Trapping and Handling
	Add On-Line Help System
	Application Testing
	Example 5-9. Using SQL Server Databases
	6. Database Management
	Review and Preview
	Database Management Tasks
	Editing Database Records
	Phone Contact Database
	Example 6-1. Editing Database Records
	Example 6-1. Using SQL Server Databases
	Adding Database Records
	Example 6-2. Adding Database Records
	Example 6-2. Using SQL Server Databases
	Deleting Database Records
	Example 6-3. Deleting Database Records
	Example 6-3. Using SQL Server Databases
	Finding Records in a Database
	Example 6-4. Finding Database Records
	Example 6-4. Using SQL Server Databases
	Modifying Records in Code
	Example 6-5. Modifying Records in Code
	Example 6-5. Using SQL Server Databases
	Stopping a Database Application
	Example 6-6. Stopping a Database Application
	Example 6-6. Using SQL Server Databases
	Example 6-7. Authors Table Input Form
	Additional Navigation Capabilities
	Editing Records
	Adding Records
	Deleting Records
	Stopping the Application
	Example 6-7. Using SQL Server Databases
	Example 6-8. Publishers Table Input Form
	Additional Navigation Capabilities
	Editing Records
	Adding Records
	Deleting Records
	Stopping the Application
	Example 6-8. Using SQL Server Databases
	Multiple Table Database Management
	Database Keys
	Database Modifications
	Final Application
	Example 6-9. Books Database Management System
	Basic Book Titles Input Form
	Finding Records
	Navigation Information
	Adding Publisher Name
	Adding Publisher Editing
	Modify Publishers Input Form
	Modify Authors Input Form
	Adding Author Names
	Example 6-10. Database Detective – Author Search
	Example 6-10. Using SQL Server Databases
	Viewing Author Selections
	Viewing Author Names
	Saving Author Names
	Adding Author Editing
	Input Control Navigation
	Entry and Input Validation
	Titles Form On-Line Help
	Example 6-9. Using SQL Server Databases
	Summary
	7. Database Reports
	Review and Preview
	PrintDocument Object
	Printing Document Pages
	Pen Object
	Brush Object
	Graphics Methods
	PageSetupDialog Control
	PrintDialog Control
	PrintPreviewDialog Control
	PrintDocument Object with Databases
	Example 7-1. Database Report
	Example 7-1. Using SQL Server Databases
	Example 7-2. Titles Listing
	Example 7-2. Using SQL Server Databases
	Example 7-3. Book Publishers Listing
	User Interface
	Database Connection and Printing
	Example 7-3. Using SQL Server Databases
	Other Approaches to Database Reports
	Summary
	8. Distributing a Database Application
	Review and Preview
	Accessing Database Files in Code
	Database File in Application Path
	Example 8-1. Opening Database Files in Application Directory
	Example 8-1. Using SQL Server Databases
	Database File Location with OpenFile Dialog Control
	Example 8-2. Opening Database Files with OpenFile Dialog Control
	Example 8-2. Using SQL Server Databases
	Distribution of a Visual C# Database Application
	Application Icons
	Custom Icons
	Example 8-3. Visual C# Setup Wizard
	Step 1. Welcome to the Setup Project Wizard
	Step 2. Choose a project type
	Step 3. Choose project outputs to include
	Step 4. Choose files to include
	Step 5. Create project
	Building the Setup Program
	Installing a Visual C# Application
	Summary
	9. Database Design Considerations
	Review and Preview
	Database Design
	Database Modeling
	Information Requirements
	Table Requirements
	Field Requirements
	Field Types
	Null Values
	Database Design Implementation
	Building Databases with the Microsoft Access
	Example 9-1. KWSALES Database with Microsoft Access
	Getting Started
	Customers Table
	Orders Table
	Purchases Table
	Products Table
	Define Relationships
	Building SQL Server Databases with Server Explorer
	Example 9-2. KWSALES Database with Server Explorer
	Getting Started
	Customers Table
	Orders Table
	Purchases Table
	Products Table
	Define Relationships
	Building Access Databases with Visual C#
	Example 9-3. KWSALES Database with Visual C#
	Adding Reference to ADOX Library
	Create a Database
	Create a Table
	Add Fields to Table
	Define Table Primary Key
	Define Table Indexes
	Define Table Relationships
	Example 9-4. SQL Server Databases with Visual C#
	Database Testing and Design Refinement
	Summary
	10. Sample Database Projects
	Review and Preview
	Overview of Database Projects
	Example 10-1. Sales Order Form Project
	Preliminaries
	Order Information
	Existing Customer Information
	Adding a New Customer
	Product Selection
	Submitting an Order
	Printing an Invoice
	Suggested Improvements
	Example 10-1. Using SQL Server Databases
	Example 10-2. Home Inventory Project
	Home Inventory Database
	Preliminaries
	Home Inventory Interface
	Database Connection
	Display Photo
	Database Navigation
	Editing Records
	Load Photo
	Adding Records
	Deleting Records
	Entry Validation
	Input Validation
	Inventory Report
	Stopping the Application
	Suggested Improvements
	Example 10-2. Using SQL Server Databases
	Example 10-3. Weather Monitor Project
	Weather Monitor Interface
	Record Weather Data Tab
	Weather Monitor Database
	Database Fields
	Adding Date Values and Editing Features
	Opening Database Files
	Date Display Coordination
	View Temperature Data Tab
	Temperature Summary Statistics
	Temperature Plot
	View Precipitation Data Tab
	Precipitation Summary Statistics
	Precipitation Plot
	Weather Monitor Printed Reports
	Weather Data Report
	Temperature Data Report
	Precipitation Data Report
	Weather Monitor Help System
	Weather Monitor Icon
	Weather Monitor Distribution Package
	Suggested Improvements
	Example 10-3. Using SQL Server Databases
	Summary
	11. Other Database Topics
	Review and Preview
	Exporting Database Data
	Opening a Sequential File for Output
	Writing Data to a Sequential File
	Saving a Sequential File
	Example 11-1. Exporting Database Data
	Importing Database Data
	Opening a Sequential File for Input
	Reading Data from a Sequential File
	Closing a Sequential File
	Example 11-2. Importing Database Data
	Other Database Types
	ODBC Data Objects
	Oracle Data Objects
	Multi-User Considerations
	Database Web Applications
	Starting a New Web Applications
	Web Form Controls
	Building a Web Application
	Example 11-3. Viewing Weather Data
	Summary
	Example 11-4. The Last Database Project
	More Self-Study or Instructor-Led Computer Programming Tutorials by Kidware Software

